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ABSTRACT 
Malignant melanoma is the third most frequent type of skin cancer and one of the most malignant tumors, accounting 
for 79% of skin cancer deaths. Melanoma is highly curable if diagnosed early and treated properly as survival rate varies 
between 15% and 65% from early to terminal stages, respectively. So far, melanoma diagnosis is depending subjectively 
on the dermatologist’s expertise. Computer-aided diagnosis (CAD) systems based on epiluminescense light microscopy 
can provide an objective second opinion on pigmented skin lesions (PSL). This work systematically analyzes the 
evidence of the effectiveness of automated melanoma detection in images from a dermatoscopic device. Automated 
CAD applications were analyzed to estimate their diagnostic outcome. Searching online databases for publication dates 
between 1985 and 2011, a total of 182 studies on dermatoscopic CAD were found. With respect to the systematic 
selection criterions, 9 studies were included, published between 2002 and 2011. Those studies formed databases of 
14,421 dermatoscopic images including both malignant “melanoma” and benign “nevus”, with 8,110 images being 
available ranging in resolution from 150 x 150 to 1568 x 1045 pixels. Maximum and minimum of sensitivity and 
specificity are 100.0% and 80.0% as well as 98.14% and 61.6%, respectively. Area under the receiver operator 
characteristics (AUC) and pooled sensitivity, specificity and diagnostics odds ratio are respectively 0.87, 0.90, 0.81, and 
15.89. So, although that automated melanoma detection showed good accuracy in terms of sensitivity, specificity, and 
AUC, but diagnostic performance in terms of DOR was found to be poor. This might be due to the lack of 
dermatoscopic image resources (ground truth) that are needed for comprehensive assessment of diagnostic performance. 
In future work, we aim at testing this hypothesis by joining dermatoscopic images into a unified database that serves as 
a standard reference for dermatology related research in PSL classification.  
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1. INTRODUCTION 

The incidence of skin cancer is rapidly increasing throughout the world and is becoming one of the deadliest forms of 
cancers especially in Caucasian population countries [1,2]. Malignant melanoma is the third most frequent type of skin 
cancer and one of the most malignant tumors [3]. Its incidence is on the order of 10 to 12, 18 to 20, and 30 to 40 per 
100,000 subjects in Europe, the United States, and Australia, respectively [4]. Despite its aggressive infiltration of other 
body parts, it is highly curable if diagnosed early and treated properly [5,6,7].  

Dermoscopy or its synonyms dermatoscopy and epiluminescence light microscopy (ELM) is an in vivo, non-invasive 
technique that has disclosed a new dimension of the clinical morphological features of pigmented skin legions (PSL) 
using different incident light magnification systems with an oil immersion technique [8,9]. It provides dermatologists 
with a technique for in vivo inspection of skin lesions, rendering higher accuracy for detecting suspicious cases than it is 
possible via inspecting with naked eye [10]. Stolz et al. have developed a diagnosis scheme for dermoscopic images 
assessing asymmetry (A), border (B), color (C), and diameter (D) of differential structures [11]. This ABCD rule 
became the standard in dermoscopy for staging PSL into benign, suspicious, or malignant moles (melanoma) [11,12]. 
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Depending on the observer’s experience, dermoscopy improves the diagnostic accuracy for melanoma detection up to 
50% as compared to purely visual inspection [10].  

However, dermascopic diagnosis is often subjective, and is therefore associated with poor reproducibility and low 
accuracy especially for inexperienced dermatologists, as the accuracy of experts is 75% – 84% [13,14]. Because of this 
fact, many physicians recommend computer-aided diagnosis (CAD) for analyzing PSL [15]. In recent years, there has 
been a rising interest in the development of quantitative CAD methods. Since the accuracy of diagnosis is highly 
dependent on physician’s expertise, CAD systems provide a rather objective and consistent measurement [16]. They can 
assist dermatologists in different steps of analysis, such as detection of the lesion boundary, quantification of diagnostic 
features, classification into different lesions types (tumor staging), and visualization [4]. CAD schemes differ on the set 
of features extracted from the dermatoscopic images, feature selection, classification methods as well as the image 
database and ground truth used in evaluation [17].  

A recently published review by Rajpara et al. [18] aims at evaluating the diagnostic accuracy of dermoscopy and digital 
dermoscopy for melanoma diagnosis and to compare the diagnostic accuracy of the different clinical algorithms with 
each other and with CAD-based digital dermoscopy for the detection of melanoma. The authors retrieved 765 articles, 
and 30 studies were found eligible for meta-analysis, which was basically addressing the different way of diagnosis and 
clinical decision making, while technical aspects of CAD were not regarded. However, Rajpara et al. clearly emphasized 
the need of systematically extracting evidence out of the numerous papers that have been published in dermatologic 
diagnostics.  

The purpose of this paper is to present a systematic review of the scientific literature on the use of CAD systems and 
computer vision algorithms in aiding the detection of skin melanoma and PSL with respect to the algorithms and image 
datasets. As a main difference to the study presented by Rajpara et al. [18], we emphasized the technical aspect of CAD 
rather than the clinical aspects of diagnostics. 

 

2. METHODS 

Systematic reviews aim at finding as much as possible of the research relevant to the particular research questions, and 
use explicit methods to identify what can reliably be said on the basis of these studies. Methods should not only be 
explicit but systematically aiming at producing varied and reliable results. Such reviews then go on to synthesize 
research findings in a form that is easily accessible to those who have to make policy or practice decisions. In this way, 
systematic reviews reduce the bias that occurs in other approaches of reviewing research evidence.  

 

2.1. Search Strategy 

In our study, we followed the general methodology for systematic reviews of diagnostic tests as proposed by Devillé et 
al. [19]. The steps are (i) search database, (ii) review title and abstract, and (iii) review the full text of the paper (Fig. 1). 

– Database search: A search strategy was designed to identify all potentially relevant publications about automating 
melanoma detection in dermatoscopic images. Within the periods ranging from 1985 to 2011, studies were 
identified through a computerized online search of the following databases: Medline via PubMed, IEEE Xplore, and 
Science Direct. With respect to the search terms defined in Table 1, the following criterion must be satisfied by a 
certain publication: 

 [A ∪ B] ∩ [C ∪ D ∪ E ] ∩ D ∩ [F ∪ G] (1) 

The studies retrieved were stored within the IRMA framework (http://irma-project.org/index_en.php), with 
duplicates being removed. 

– Title/abstract search: For study selection, the titles and/or abstracts excluding the keywords section of the papers 
were evaluated according to the terms as defined in Table 1:  

 [A ∪ B ∪ F] ∩ D ∩ [H ∪ I] (2) 

– Full text search: The full texts of the remaining papers were then searched manually in relation to the following 
inclusion criteria, requiring all remaining studies  
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1. to have an abstract that is publicly available, 

2. to assess CAD system(s) for the purpose of melanoma detection and/or classification, 

3. to concern machine algorithm(s) working with dermatoscopic images, 

4. to provide information on the dermatoscopic images dataset(s) used, 

5. to present complete data (i.e., sensitivity, specificity) on the CAD system, 

6. to be published in English language, and  

7. not to be a review paper. 

 

2.2. Diagnostic Accuracy Assessment 

There are different methods to assess the diagnostic accuracy of CAD systems or algorithms. In our systematic review, 
we have used the following terms: 

– Sensitivity: Sensitivity is a statistical measure that defines the proportion of true positive subjects with the disease in 
a total group of subjects with the disease (TP/TP+FN). In other words, it yields the probability of getting a positive 
test result in subjects with the disease. Hence it relates to the potential of a test to recognize subjects with the 
disease [20]. 

– Specificity: This measure of accuracy of a diagnostic test is complementary to sensitivity. It is defined as the 
proportion of subjects without the disease with negative test result to the total number of subjects without disease 
(TN/TN+FP). In other words, specificity represents the probability of a negative test result in a subject without the 
disease. Therefore, we can postulate that specificity relates to the aspect of diagnostic accuracy that describes the 
test ability to recognize subjects without the disease [20].    

– ROC: When the trade-off between sensitivity and specificity is represented in a diagram forming a curve, the 
receiver operating characteristic (ROC) is drawn. Usually, x- and y-axis are labeled with specificity and 1 – 
sensitivity, respectively. ROC is a technique for visualizing, organizing and selecting classifiers based on their 
performance [21]. It indicates the relationship between the true positive rate (TPR) and the false positive rate (FPR) 
of the test of various thresholds used to distinguish disease cases from non-cases [24]. 

– AUC: The area under the ROC curve (AUC) estimates the discriminative power of a test. The definition range of 
AUC is [0 .. 1] indicating the effectiveness of the test. A perfect diagnostic test has an AUC of 1.0, whereas a non-
discriminating test has an area of 0.5 [20]. 

Database 
search

Title/abstract 
search

Full text 
search

n = 182

n = 35

n = 9

 
Figure 1: Flow chart of the systematic review process 
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– SROC: The SROC curve is intended to represent the relationship between TPR and FPR across studies, recognizing 
they may have used different thresholds. In contrast to ROC analysis, the set of (FPR, TPR) points need not 
necessarily yield a unique, monotonic curve [24]. 

– DOR: The diagnostic odds ratio (DOR) is used for general estimation of the discriminative power of diagnostic 
procedures and also for the comparison of diagnostic accuracies between two or more diagnostic tests [20]. It 
describes the odds of positive test results in participants with disease compared with the odds of positive test results 
in those without disease; hence, it combines both sensitivity and specificity in one measure [18]. A high DOR value 
suggests accuracy of the diagnosis, while DOR values < 1 suggest that the test has failed to diagnose correctly 
[22,23].  

– LR+: The likelihood ratio (LR) of any clinical finding is the probability of that finding in patients with disease 
divided by the probability of the same finding in patients without disease [24]. The LR for positive test results 
(LR+), indicates how likely the positive test result is to occur in subjects with the disease as compared to those 
without the disease. LR+ = sensitivity / (1 – specificity) [20] is usually higher than 1.0 because it is more likely that 
the positive test result will occur in subjects with the disease than in subject without the disease.  

– LR–: Likelihood ratio for negative test results LR– on the other hand represents the ratio of the probability that a 
negative test result will occur in subjects with the disease to the probability that the same result will occur in 
subjects without the disease. LR– = (1 – sensitivity) / specificity [20] is usually less than 1.0 because it is less likely 
that negative test result occur in subjects with disease than in subjects without disease.  

According to these definitions, the diagnostic accuracy of CAD systems and algorithms described in the included 
studies were evaluated using the Meta-Disc software (http://www.hrc.es/investigacion/metadisc_en.htm), Version 1.4. 

 

2.3. Databases Used for Experiments 

Type, size, and ground truth of databases used for evaluation studies is a critical factor for generalizing results. 
Therefore, we monitored the datasets that included only images obtained through a dermatoscopic device, since it uses 
controlled lighting conditions. As with proper balance of light intensity and camera gain, images taken with digital 
cameras have a low level of electron noise, while the specular reflection noise in the dermatoscopic device is removed 
applying oil immersion [25]. 

 

3. RESULTS 

Based on the inclusion criteria described above, 182 papers were considered and 35 papers matched the abstract/title 
search process. Finally, n = 9 studies were included according to the full text evaluation criterions. This suggests that 
searching the titles and abstracts rather than reviewing the full paper decreases the inclusion accuracy by 14.3%. 

Symbol Term Synonym 

A Computer aided diagnosis Computer-aided diagnosis 
B Computer assisted diagnosis Computer-assisted diagnosis 
C Dermatology Dermatology 
D Melanoma  
E Skin cancer  
F Algorithm Algorithms 
G Automatic Automated 
H Dermoscopy Dermoscopic 
I Dermatoscopy Dermatoscopic 

Table 1: Symbols used in Equations (1) and (2) 
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3.1. Included Studies 

The n = 9 studies included in the systematic review were published between 2002 and 2011. According to the selection 
criterion, they all used dermatoscopic images captured with a dermatoscopic device and studies that used a digital 
camera for image acquisition were excluded [25]. Seven studies used a dataset size smaller than 1,000 images 
[15,26,28,29,31-33], and two studies referred to more than 1,000 images [29,31], providing that all the datasets included 
both malignant (melanoma) and benign (nevus) PSL. The dermatoscopic algorithms mentioned in the included studies 
were: ABCD rule, Menzies method, 7-point checklist, and seven features for melanoma. ABCD rule, the algorithm 
mostly referred to, was mentioned in four studies [15,27,31,32], the other dermatoscopic algorithms were mentioned in 
only one study [32], and five studies did not mention any algorithm [26,28-30,33].  

 

3.2. Diagnostic Accuracy 

Diagnostic accuracy relates to the ability of a test to discriminate between the target condition and health. This 
discriminative potential can be quantified by the measures of diagnostic accuracy such as sensitivity and specificity 
[20]. Based on Table 2, the maximum values for sensitivity and specificity are 100.0% [28] and 98.14% [15] 
respectively. The minimum values for sensitivity and specificity are 80.0% [29,31] and 61.6% [29] respectively. 
Sensitivity and specificity are almost equal in two studies: (85%.9 vs. 86.0%) [27] and (80.0% vs. 79.77%) [31]. An 
ROC plane (Fig. 2, left) and an SROC curve (Fig. 2, right) are plotted for the included studies, where the AUC in the 
SROC curve is 0.8692. Each point represents a different study. Red (horizontal) and green (vertical) lines represent 
sensitivity and specificity, respectively. The dotted red (horizontal) and green (vertical) lines represent the confidence 
intervals. Blue lines (curves) represent the symmetrical SROC curve. 

Further analysis is presented in Figure 3. Pooled sensitivity (Fig. 3, top) is 0.90. The 95% confidence interval (CI) is 
[0.52, …, 1.00]. For the included studies individually, all sensitivities were larger than 80% with both the lowest and 
highest sensitivity reported as 0.80 and 1.00, respectively. Here, however, the 95% CI are very large: [0.01, …, 1.00] 
and [0.03, …, 1.00], respectively. Pooled specificity (Fig. 3, middle) is 0.81with 95% CI [0.44, …, 0.98]. The majority 
of studies found specificities larger than 80% with a lowest and highest specificity of 0.61 (95% CI [0.00, …, 1.00]) and 
0.98 (95% CI [0.02, …, 1.00]. Pooled DOR (Fig. 3, bottom) is 15.89 (95% CI: [1.39, …, 181.4]. Individual values 
ranged from 6.28 (95% CI [0.01, …, 3,554.36] to 1,517.58 (95% CI [0.00, …, 113,645,277,009.18]. Pooled positive 
LR+ is 3.20 (95% CI: [0.99, …, 10.40]. Values ranged from 2.06 (95% CI [0.15, …, 28.95]) to 51.96 (95% CI [0.00, …, 
79.560.156,90]). The pooled negative LR– is 0.24 (95% CI [0.05, …, 1.09]). Individual values ranged from 0.02 (95% 
CI [0.00, …, 21,445.77]) to 0.34 (95% CI [0.03, …, 4.36]). 

Figure 2: ROC plane (left) and SROC curve (right) 
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3.3. Databases 

Different private databases (and one standardized database [34]) with different sizes, image resolution/format, and 
resources are used in the included studies. In total, the nine studies included 14,421 dermatoscopic images (Tab. 2). 
Database sizes ranged from 100 – 2,430 images. Two studies [15,27] mentioned the used ground truth, which was based 
on dermatologist-drawn borders. The minimum database size was 100 of 24-bit JPEG images with resolutions of 673 x 
423 pixels to 2,556 x 1,600 pixels [15]. The largest data volume was used in [30], which is based on 2,430 with 
unknown resolution/format. After contacting the authors, in total 8,110 dermatoscopic images [29,34-38] have been 
made available to the public and merged within the IRMA system, as it has already been made for mammography and 
radiography in bone age assessment [45,46]. Figure 4 plots the resolution of available data with respect to the total 
number of images. As it can be seen from the graph, the database holds about 1,000 images of average resolution of 600 
x 600 pixels, while experiments of 500 x 500 pixels can be performed on about 10,000 images. 

 
Figure 3: Pooled sensitivity (top), specificity (middle) and DOR (bottom) 
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This implies the existence of a large ground truth that we can experiment on. Image resolutions ranged from 150 x 150 
pixels to 1,568 x 1,045 pixels, with resolution 632 x 387 pixels constituting the most, by 5,504 images. Figure 4 is 
visualizing the quality of available data. In lowest resolution of 150 square pixels, the maximum total of 8,110 images is 
available. Increasing the required resolution, the number drops down. For a resolution of 625 square pixels, only about 
1,000 images are available.  

 

4. DISCUSSION 

Based on Table 3, the general accuracy of the tests in the included 9 studies is “good” referring to their AUC value of 
0.87. The accuracy of the test improves when the ROC curve moves closer to the top left hand corner, that is, towards 
point (0,1) of the graph [42], as shown in Figure 2. We can also see that the ROC curve is nearly to be ideal, that is, 
containing a (0,1) point that denotes that the study perfectly separates positive and negative examples [43]. What leads 
to this characteristic in the curve is study [31], where sensitivity is 1.0 and specificity is 0.041. Thus, general accuracy 
shows good results in terms of sensitivity 90% and specificity 81%. The large size of 95% CI, however, is due to the 
small sample size (n = 9). 

The results obtained here suggest the accuracy of the diagnosis (i.e DOR=15.89), the small effect on increasing 
probability of the disease (i.e; LR+ = 3.20), and the moderate effect on decreasing the probability of disease (i.e; LR– = 
0.24). The review shows poor diagnostic performance of automated melanoma detection as evidenced by the DOR 
(15.89), which depicts that the odds of a positive test result is 15.89 times greater for someone with melanoma than 
without. This finding is confirmed by the likelihood ratio, where LR+ is equal to 3.20. This means that positive 
malignancy (melanoma) is 3.2 times more common in patients with melanoma than in those without melanoma. In other 
words, the patient’s positive test result would be about 3.2 times more likely to be seen in someone with melanoma than 
in someone without melanoma. As for LR–, which equals to 0.24, this denotes that a negative malignancy (benign) is 
0.24 times as common in patients with melanoma as in patients without melanoma. 

Meta-analyses are often performed retrospectively on studies which were not planned with this in mind. In many 
situations it might be expected that differences in the study protocols will produce heterogeneity. Also, even if the same 
protocols are used for all studies, variability in study quality, possibly due to mistakes in implementing the protocol, 
may give rise to heterogeneity. Therefore, it is common to include a test for heterogeneity in the treatment difference 
parameter across studies [41]. Tests for heterogeneity are commonly used to decide on methods for combining studies 
and for concluding consistency or inconsistency of findings. It examines the null hypothesis that all studies are 
evaluating the same effect. (I-square) describes the percentage of total variation across studies that is due to 
heterogeneity rather than chance. It can be readily calculated from basic results obtained from a typical meta-analyses 
as: I2 = 100% x (Q-df)/Q, where Q is the Cochran chi-square heterogeneity statistic and df is the degree of freedom. 
Negative values of I2 are put equal to zero so that I2 lies between 0% and 100%. A value of 0% indicates no observed 
heterogeneity, and larger values show increasing heterogeneity [44]. Our studies showed an I2 value of 0%, and thus, 
indicating no observed heterogeneity. In other words, studies used in this paper are homogenous studies. Relating our 
findings to Rajpara et al. [18], the overlap between their n = 30 included studies and our n = 9 is only two. This is due to 
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Figure 4: Joint IRMA melanoma database 
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the different goals of analysis, clinical vs. technical, respectively, as Rajpara et al. emphasized the artificial intelligence 
when dealing with the technical part, whereas in our study we included the technical part in general.  

And, regarding this point, and as a second goal of our work, we are looking forward to establishing a larger joint 
dermatoscopic image database that we aim it serves as a standard reference for dermatoscopic related research, 
especially that we found a lack on the image resources while conducting this research. 

 

5. CONCLUSION 

In conclusion, CAD systems could serve as an objective second opinion [16] to dermatologists, through assisting them 
in different analysis steps (i.e; detection of lesion boundary) [4]. Although their high diagnostic accuracy automated 
methods had small effect on increasing probability of the disease (LR+), and a moderate effect on decreasing the 
probability of disease (LR–). One likely reason for this finding might be due to the lack of dermatoscopic image 
resources needed for testing the diagnostic performance of the method(s) applied. That is, lack in the ground truth data. 
And, as a future work, this hypothesis will be tested by building a large joint dermatoscopic images database that will 
serve as a standard reference for dermatology related research. 
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