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ABSTRACT

Ultrasound elastography is an imaging technology which can detect differences in tissue stiffness based on tissue
deformation. For successful clinical use in cancer diagnosis and monitoring the method should be robust to sources
of decorrelation between ultrasound images. A regularized Dynamic Programming (DP) approach was used for
displacement estimation in compressed tissue. In the Analytic Minimization (AM) extension of DP, integer
displacements are calculated just for one RF-line, and later propagated laterally throughout the entire image.
This makes the seed RF-line very important; faulty seed lines could propagate erroneous displacement values
throughout the image resulting in the appearance of false ”lesions”. In this paper we analyze the robustness of
this method in free-hand palpation of laboratory tissue phantoms. We are proposing an update to the algorithm
which includes a random search for the most robust seed RF-line. Axial integer displacements are obtained
on each random seed line individually with DP optimization. For each random axial RF-line, multiple random
values for decorrelation compensation are used in the displacement estimation. The displacement values are then
compared and several metrics of stability and consistency are considered. A ranking is established and the line
deemed most robust will become the seed line for displacement propagation, while also selecting the most stable
value for decorrelation compensation. The random search can be achieved at no additional computational cost
in a parallel implementation. The results indicate significant improvement in the robustness of the DP approach,
while maintaining real-time computation of strain images.

1. BACKGROUND AND RATIONALE

Ultrasound Elastography is an imaging technology which can detect differences in tissue stiffness based on tissue
deformation.1 Our work in this paper focuses on real-time quasi-static elastography. The tissue is compressed
and relaxed in a continuous free-hand motion and ultrasound images are simultaneously acquired. This method
is easy to use and also cheap as it requires no extra hardware. This makes it particularly appealing for medical
imaging applications; diagnosis or monitoring could be done at the patient’s bed side. There are two hurdles
which once resolved would ensure success for clinical use: real-time computation of strain images and dealing with
the potential for global and local decorrelation between pre- and post-compression ultrasound signals. Various
sources of decorrelation are affecting the computation of strain images in in-vivo data, such as incoherent fluid
(blood) motion, out-of-plane motion of structures within one image due to transducer or respiratory motion,
subsample speckle motion, and a high degree of compression.

Rivaz and Hall initially proposed optimizing a recursive regularized cost function using Dynamic Programming
(DP).2, 3 The method resulted in integer values for axial displacement and subsample displacement could also be
achieved but at a high computational cost. Rivaz et al. refined the method further using a 1D and 2D Analytic
Minimization (AM) of the cost function.4 It takes the integer displacement of a single axial radio frequency
(RF)-line from DP and produces the subsample axial and lateral displacement fields for the entire image.

In this work we analyze the robustness of the AM2D method. Since this method is based on computing
integer displacements using DP on only one RF-line, it is crucial that we choose a starting line with little or no
decorrelation between the two images. Here we present a method for identifying robust, stable lines and reducing
the potential to generate artifact lesions.
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2. 2D AM SUBPIXEL DISPLACEMENT ESTIMATION

Here we briefly review the 2D AM method in which 2D integer displacements are first obtained using DP on a
single RF-line and are then used to produce 2D subsample displacements for the entire image.

1. Calculate integer axial ai and lateral li displacements of one seed RF-line using DP (2). Calculate an initial
subsample estimate using linear interpolation of the integer displacements.

Let I1 and I2 be two ultrasound images acquired before and after deformation. Let m be the number of
RF-lines. Each signal is sampled at i = 1, 2 · · ·m. A regularized cost function is generated combining the
prior of displacement continuity (regularization term) and an amplitude similarity term. The displacement
continuity term for line j can be written as:

Rj(ai, li, ai−1, li−1) = αa(ai − ai−1)2 + αl(li − li−1)2 (1)

where αa and αl are axial and lateral regularization weights respectively.

The regularized cost function at the ith sample of the jth A-line becomes:

Cj(ai, li, i) = [I1(i, j) − I2(i + ai, j + li)]
2 + minda,dl

{
Cj(da,dl,i−1)+Cj−1(da,dl,i)

2 + wRj(ai, li, da, dl)
}

(2)
where w is a regularization weight for smoothness; da and dl are temporary axial and lateral displacements
which are varied in order to minimize eqn. (2).

2. Calculate subsample axial and lateral displacements for the seed RF-line using 2D AM (below). They will
be added to the initial integer estimates.

3. Propagate the solution of the seed RF-line to the left and right. using the displacement of the previous
line as initial estimate.

The aim is to calculate Δai and Δli such that the duple (ai + Δai, li + Δli) gives the axial and lateral
displacements at the sample i. The regularized cost function becomes:

Cj(Δa1, ..., Δam, Δl1, ..., Δlm) =
∑i=1

m {[I1(i, j) − I2(i + ai + Δai, j + li + Δli)]
2 +

+α (ai + Δai − ai−1 − Δai−1)
2 + βa (li + Δli − li−1 − Δli−1)

2 + β
′
l (li + Δli − li,j−1)

2} (3)

,where the index j was dropped for the jth RF-line and li,j−1 is the lateral displacement of the previous
RF-line (except for the seed line where li,j−1 = li. α, βa and β

′
l are regularization terms which ensure

continuity in displacements with respect to the top (axial α), and the top and left/right (lateral βa and
β

′
l ). If the displacement of the previous line is not accurate, it will affect the displacement of the next line

through the last term in the right-hand side of (3).

3. EXPERIMENTAL DESIGN AND RESULTS

For experimental evaluation we palpated a breast elastography phantom with a 10mm φ lesion and three times
stiffer than the background. RF data was acquired with a 7.27MHz linear array at a sampling rate of 40MHz.
In order to evaluate the magnitude of the problem, we first set out to evaluate the percentage of seed RF-lines
with faulty DP displacement estimations. When propagated laterally to the neighboring lines, these faulty
displacement estimations would result in artifact lesions, clearly visible on the final elastogram (Fig. 1). Many
of the artifacts created by the erroneous displacement estimation were very small (Fig. 1 b) and localized at the
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Figure 1. Examples of art1fact lesions in strain images using DP AM2D method. Data collected from breast phantom
freehand palpation.

top of the image (Fig. 1 b, c). Some artifacts were however large, sometimes propagating through a big part of
the image (Fig. 1 d, e) and, in very rare cases, obscuring the real lesion (Fig. 1 f).

DP displacement computation uses a smoothness regularization parameter w (2), which should prevent regions
with high local decorrelation from introducing errors in displacement estimation, but if chosen too large would
result in oversmoothing. Strain images were obtained with the AM2D method using each RF-line as a seed, each
for 11 (eleven) values for w: 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55 and 0.6. Each resulting elastogram
was visually inspected for the presence of artifacts, knowing the shape and size of the expected lesion. The
percentages of faulty and good seed lines are summarized in Table 1. Some lines produced very faint, very
small artifacts on the order of a couple of pixels which were not clearly visible at first inspection and they were
categorized as indeterminate.

Table 1. Percentage distribution of AM2D behavior for seed RF-lines given multiple values for w (smoothness regularization
parameter)

w Good Lines (%) Faulty Lines (%) Indeterminate (%)
0.10 44.2 55.8 -
0.15 57.8 42.2 -
0.20 61.3 33.6 5.1
0.25 68.1 30.0 1.9
0.30 65.0 30.5 4.5
0.35 61.7 32.0 5.3
0.40 53.3 41.8 4.9
0.45 53.1 46.9 -
0.50 43.4 56.6 -
0.55 32.1 67.9 -
0.60 24.3 75.8 -

The results were very revealing both about the importance of the value of w, but also of the magnitude of
the decorrelated areas. We noted that faulty lines did not appear to be predominant in certain locations, like
for example towards the lateral margins of the imaged area, but they were actually widely dispersed throughout
the image. In light of the results, for this specific data set we continued our investigation only for w in the range
(0.25, 0.35), to ensure a high probability of finding a good starting RF-line.
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Figure 2. Integer DP displacement estimation for seed RF-lines 249 to 255. Note the areas (for lines 250 and 252
respectively) where the change in slope produces the artifact lesions

3.1 Deformation Slope

In a continuous piece of tissue, the deformation field resulting from a stress field induced by applied compression
has a monotonous ramp profile.5 Our hypothesis was that faulty lines would exhibit a perturbation in the
monotonously decreasing slope of their displacement profile. For example, when plotting DP displacement
values for seed RF-lines 249 to 255 (Fig. 2), faulty lines 250 and 252 respectively exhibited a change in slope
towards the top portion of the imaging area, which in the end resulted in artifact lesions (Fig. 1 c - 250 and b -
252).

A change-in-slope parameter was computed for the DP displacement profile for each seed RF-line, for w=
0.25, 0.30, 0.35. 486 lines were evaluated for each of the three values for w, for a total of 1458 computations. The
change-in-slope test was considered positive when the 3 (three) or more positions exhibited a continuous change
in the slope of displacement. Note that the 3 (three) positions did not need to be consecutive, as long as the
ramp stayed flat or continued the change direction(Fig. 3 a, b).

3.2 Displacement Stability

Another measure of robustness is stability. A robust seed RF-line needs to exhibit the same or similar DP
displacement estimation across different w values. We computed the percentage of positions (pixels) for which
displacement values differed more than 3 (three) pixels between different values of w. For all 486 lines, 3 (three)
pairs of displacement values were compared: 1) w = 0.25 vs. w = 0.30, 2) w = 0.30 vs. w = 0.35, 3) w = 0.25 vs.
w = 0.35. The score received by each line was averaged over the three comparisons for a final score, potentially
ranging from 0 to 1 (100% of pixels exhibited more than 3 (three) pixels differences). We wanted to test the
statistical significance of the difference between the faulty lines population and the robust lines population.
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Figure 3. Change-in-slope detection algorithm. The 3 (three) positions where the change in slope is exhibited could be
consecutive (a) or not (b)

4. RESULTS AND DISCUSSION

4.1 Deformation Slope

For a robust AM2D algorithm one single successful seed RF-line is sufficient. The change-in-slope parameter
was designed to select good seed lines with monotonously increasing/decreasing displacement profile. Over all
1458 computations of the parameter (486 lines * 3 w values), the sensivity for selecting a good line was 91.7%,
while the specificity was 48.6% ( Table 2). The measure performed up to 93.1% sensitivity when tested across
just one w value. We concluded the measure was promising but not sufficient on its own.

Table 2. Change-in-Slope (TP = true positive, FP = false positive, TN = true negative, FN = false negative)

actual
value

Prediction outcome

p n total

p′

TP = 835 FN = 238
P′

n′

FP = 76 TN = 252
N′

total P N

4.2 Displacement Stability

486 scores were computed, one for each potential seed RF-line. The scores ranged from 0 to 0.2649. The average
score for the good lines was 0.0058 (stdev = 0.0186) and the average score for the faulty lines was 0.0444 (stdev
= 0.0586). A one-side Student t-test showed a p-value of 3.73909e− 17 ( Table 3).

To increase the significance of the prediction value, we also computed a combined score for the two detection
algorithms. The averaged Change-in-Slope score over the 3 (three) values for w was either 0, 0.33, 0.66, or
1, depending on how many of the three instances were deemed positive by the test. This score was added to
the Displacement Stability score for a combined overall score. This overall score ranged from 0 to 1.1588. The
average score for the good lines was 0.0795 (stdev = 0.2422) and the average score for the faulty lines was 0.4939
(stdev = 0.4444), for a p-value of 1.75837e− 27 ( Table 3).
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Table 3. Robustness score: Displacement Stability vs. Combined score for Displacement Stability + Change-in-Slope

Displ. Stability Displ. Stability + Change-in-Slope
Good Lines Faulty Lines Good Lines Faulty Lines

Min 0 0 0 0
Max 0.1002 0.2649 1 1.1588
Avg 0.0058 0.0444 0.0795 0.4939

StDev 0.0186 0.0586 0.2422 0.4444
p-value 3.73909E-17 1.75837E-27

Following the results of this analysis, a random search algorithm was implemented for the selection of a
robust, stable seed RF-line as follows:

1. DP integer displacement is calculated for 5 random RF-lines, each at 5 random w values

2. A combined Change-in-Slope average plus Displacement Stability average score is computed

3. The most robust, stable line is chosen as the line with the smallest combined score, which also does not
have any positive Change-in-Slope score

4. The chosen seed line’s displacement values are propagated using the AM2D method

Given the current parallel computational resources, the addition of this selection test does not add a significant
amount of time to the overall running time. DP takes the same time as before but it’s now computed 25 times,
and the computation of each score takes on the order of a couple of milliseconds. On 100 random runs of our
testing algorithm, we only encountered 1 (one) situation where a faulty line was selected. The reason for the
selection was that all 5 of the random line tested were faulty. This prompted us to introduce the additional
condition that the chosen line should not have any positive Change-in-Slope score. Following this modification,
no faulty situation has been encountered so far. We will continue to test our algorithm on the presented data
set, as well as on new ex-vivo and in-vivo tissue data.

5. CONCLUSION

We proposed and successfully implemented an algorithm for the selection of a robust, stable RF-line to be used as
seed for the DP displacement estimation and later propagated using the AM2D algorithm for elastography. The
benefit of this algorithm is significant as it has the potential to improve the robustness of ultrasound elastography
in in-vivo tissue which can be highly decorrelated. We are in the process of evaluating this hypothesis. The
selection of robust seed RF-lines becomes even more important as we move towards real-time 3D ultrasound
elastography.
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