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ABSTRACT. Purpose: Recent advances in magnetic resonance (MR) scanner quality and the
rapidly improving nature of facial recognition software have necessitated the intro-
duction of MR defacing algorithms to protect patient privacy. As a result, there are a
number of MR defacing algorithms available to the neuroimaging community, with
several appearing in just the last 5 years. While some qualities of these defacing
algorithms, such as patient identifiability, have been explored in the previous works,
the potential impact of defacing on neuroimage processing has yet to be explored.

Approach: We qualitatively evaluate eight MR defacing algorithms on 179 subjects
from the OASIS-3 cohort and 21 subjects from the Kirby-21 dataset. We also evalu-
ate the effects of defacing on two neuroimaging pipelines—SLANT and FreeSurfer
—by comparing the segmentation consistency between the original and defaced
images.

Results: Defacing can alter brain segmentation and even lead to catastrophic fail-
ures, which are more frequent with some algorithms, such as Quickshear,
MRI_Deface, and FSL_deface. Compared to FreeSurfer, SLANT is less affected
by defacing. On outputs that pass the quality check, the effects of defacing are less
pronounced than those of rescanning, as measured by the Dice similarity coefficient.

Conclusions: The effects of defacing are noticeable and should not be disre-
garded. Extra attention, in particular, should be paid to the possibility of catastrophic
failures. It is crucial to adopt a robust defacing algorithm and perform a thorough
quality check before releasing defaced datasets. To improve the reliability of analy-
sis in scenarios involving defaced MRIs, it is encouraged to include multiple brain
segmentation pipelines.
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1 Introduction
Magnetic resonance (MR) images are widely used to study the brain, and there has been an ever
increasing number of whole head MRIs being acquired clinically—about 40 million (139 per
1000 in 2016 would have equated to 44 million scans.) scans annually in the United States.1 In
conjunction with the increasing number of scans are three important trends. First, there have been
considerable improvements in scanner technology including resolution and signal-to-noise ratio
improvements, which have come from many factors including the increased proportion of 3 Tesla
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(3T) scanners over 1.5T systems and the use of compressed sensing image acquisition. These
improvements have led to increasing numbers of clinical scans that are reconstructed with high
fidelity. Second, there has been increasing efforts by medical imaging stake holders toward open
and reproducible science,2 which has led to ever increasing amounts of acquired whole-head
MRIs being made publicly available. These open data initiatives are aimed at reducing barriers
to entry in many research fields requiring medical images of the human brain. Studies, such as
ABIDE,3 ADNI,4 and HCP,5 are all examples of large studies that have made a considerable
amount of their data publicly available, and there are many others.6–10 In addition, many medical
health systems are commoditizing patient data by deidentifying it and selling the data to com-
mercial entities.11,12 Third, deep learning (DL) technologies, fueled by vast training data, archi-
tectural advancements, and remarkable computational power improvements, have paved the way
for more sophisticated face recognition capabilities. In this context, the issues surrounding pri-
vacy have become prominent.

Investigators are provided guidelines by their institutional review boards for handling pro-
tected health information (PHI) that is collected during a human subjects research study. PHI
comprising textual information (e.g., meta-data such as name, date of birth, medical record num-
ber, etc.), for example, can be readily removed while exporting data from a picture archiving and
communication system or after export using one of several software packages.13,14 The question
of whether and how investigators should handle the facial information that is present in high
quality medical images is not yet agreed upon. In particular, although some studies have shown
that photographs can be matched with reconstructions from high-quality medical images;15–17

these matches are made in highly controlled, small-scale settings, in which there is always a
corresponding pair between photograph and MR reconstruction. The capability to match photo-
graphs with reconstructions from MRIs is not routinely available, nor has it been tested on large
scale cohorts where matches may not exist. Nevertheless, it is reasonable to assume that with
technological advances, this capability could extend to collections of photographs found on the
internet.

Many algorithms have been developed over the past 15 years to tackle privacy issues asso-
ciated with facial information in medical images.18–26 These algorithms operate by obscuring or
removing potentially recognizable portions of the face from the MR images, thus reducing the
utility of three-dimensional (3D) reconstruction for identification purposes. We refer to them
collectively as “defacing algorithms” although some also remove the ears as well. While defacing
algorithms remove facial features to preserve privacy, concerns have arisen that they may neg-
atively affect analysis. Sitter et al. showed that automated pipelines for volumetric analysis
exhibit a higher failure rate when applied to defaced images as compared to original
images.27 Moreover, Buimer et al. found that the effects of defacing vary across the subject’s
age and across brain regions.28 Other studies have also shown the effects of defacing on down-
stream tasks, such as co-registration between MR images and EEG/MEG data,29 brain atrophy
estimation,30 quality measurements,31 whole brain segmentation,32 volume analysis,25 and head
and neck cancer segmentation.33 Theyers et al. conducted a comprehensive study on the effects of
defacing on brain volume measurements and fMRI preprocessing, as well as image registration
across multiple cohorts.34 They found that, beyond the direct errors caused by defacing, none of
the resulting differences were significantly greater than those that could be introduced by using
different DICOM-to-NIfTI converters.

The findings from these studies help us to better understand the consequences of applying
defacing techniques and to guide us toward privacy protection standards that the entire commu-
nity can agree upon. But further characterization is necessary. To our knowledge, no prior studies
have analyzed the effects of defacing on brain segmentation using multiple advanced pipelines,
each with a fundamentally different methodological approach. Moreover, few studies have simul-
taneously (i) used a substantial volume of data for validation and (ii) included a comprehensive
selection of defacing algorithms for comparison.

In this work, we include eight defacing algorithms that cover the majority of publicly avail-
able choices for defacing (see Fig. 1 for examples) and use MR images from 200 subjects across
two public datasets. As part of our evaluation, we analyze the effects these defacing algorithms
have on the performance of two popular neuroimaging pipelines: spatially localized atlas net-
work tiles (SLANT)35,36 and FreeSurfer.37 In our experiments, we begin by applying each
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defacing algorithm to T1-weighted MR images of 179 subjects from the OASIS-3 cohort.8 We
conduct a manual quality check on the outputs of each defacing algorithm, in which we identify
success and two types of failures. We exclude those failure cases from further analysis, as
described in Sec. 3.1. Next, we feed both the defaced images and the original images into two
brain segmentation pipelines (SLANT and FreeSurfer). To measure the effects of defacing, we
compute the Dice similarity coefficient (DSC)38 between the segmentations obtained from the
original MR image and the corresponding defaced MR image. To quantify our original versus
defaced segmentation results, we compare the effects of defacing with those of the segmentation
of scan–rescan data—after scan–rescan subject alignment—by using the Kirby-21 dataset.39

We observe that defacing has a measurable impact on brain segmentation, with the effects
being larger on FreeSurfer segmentations (DSC ¼ 0.918� 0.019) than on SLANT segmentation
(DSC ¼ 0.970� 0.005). Also, we found that DSC ¼ 0.879� 0.015 for FreeSurfer segmenta-
tion on scan–rescan pairs and DSC ¼ 0.952� 0.005 for SLANT segmentation on scan–rescan
pairs. From this result, we conclude that the effects of defacing are smaller than those of scan–
rescan followed by registration. Based on this, one might be tempted to ignore the effects of
defacing. But we also found that catastrophic failures in brain segmentation can be caused
by defacing. While most of these failures are typically easy to detect during quality checks, some
can have subtle effects, as shown in Sec. 5.3 and discussed in Sec. 5.4.

2 Methods and Materials

2.1 Defacing Algorithms
The eight defacing algorithms used in our comparison are described in detail in the
Supplementary Material. Here, we provide a brief outline of the eight methods.

Original Defacer Quickshear Pydeface MRI_Deface

FSL_deface Face_Masking AnonyMI mri_reface_0.2 mri_reface_0.3

Fig. 1 A sagittal slice of an MRI is displayed over the reconstruction of the whole head MRI. Top
set of images from left to right is the acquired MRI and then defacing using Defacer,23

QuickShear,19 Pydeface,22 and MRI_Deface.18 The bottom set of images from left to right is defac-
ing using FSL_Deface,21 Face_Masking,20 AnonyMI,24 mri_reface_0.2,25 and mri_reface_0.3.25
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Defacer23 is an open-source deep-learning based method for MRI anonymization. It uses a
deep network to identify the eyes, ears, nose, and mouth in an MR image. This is followed by
image processing techniques to manipulate the intensity values of the detected facial feature
voxels and their immediate surroundings.

Quickshear19 uses a precomputed brain mask and edge detection to identify a “shearing
plane” that separates the face from the brain. We generate the brain masks required by
Quickshear using BET (Brain Extraction Tool)40 with default settings.

MRI_Deface,18 Pydeface,22 and FSL_deface21 have a similar workflow, in that they each
register a template with a corresponding mask (or masks) to the input image; with non-brain
voxels being masked out or manipulated through some straightforward image processing to pro-
vide anonymization. The methods use linear registration with either Fischl et al.41 or FLIRT.42

FSL_deface has a key difference with MRI_Deface and Pydeface in that it includes the ears in its
defacing mask. Given the identifiability of the ears,43 this seems like an unfortunate oversight of
MRI_Deface and Pydeface.

Face_Masking20 focuses on blurring the facial surface so as not to introduce hard intensity
edges to the whole head MRI that can confuse subsequent processing tools. The result is an
artificial cubist-like face, see Fig. 1 for an example.

AnonyMI24 uses a combination of a watershed algorithm44 and a non-linear registration45 of
a template, to identify the facial surface and features. The template provides a generic face, and
the facial surface and features are blended with the generic face while ensuring that the image
intensities in the blended regions come from the same distribution as the facial features.

mri_reface25 uses a non-linear registration46 to bring an average face template into the space
of the input image and then replaces the facial features with those of the template. The average
face template intensities are transformed to match the input intensities with intensity matching—
similar to the one described by Nyúl and Udupa47—followed by bias correction for smooth local
intensity normalization between the images.48 We use both publicly available versions of mri_re-
face in the present study.

We note that Schwarz et al. evaluated whether MR images were correctly recognizable by
facial recognition software after defacing.25 Of the presented methods in that paper, the ranking
in terms of correct matching between photos and MRIs of participants after defacing was:
FSL_Deface (28%), mri_reface (30%), MRI_Deface (33%), and PyDeface (38%). The authors
also included an intra-class correlation coefficient (ICC) comparison between the presented
methods before and after defacing. ICC would identify brain structures that have changed their
volume in some way, it would not highlight changes in the spatial positioning of those brain
structures, which is critically important when potentially considering the accidental removal
of portions of the brain due to defacing. We note this, as we have observed brain structures
“moving” if their segmentation is performed on the original or defaced images; see Fig. 6 for
an example.

2.2 Dataset
All the defacing methods in our study have reported results on T1-w MRIs; additionally T1-w
MRIs are typically the images acquired at the highest resolution—important for correct facial
recognition—and are also the most commonly acquired images. As such, we have focused our
defacing evaluation on T1-w MRIs from a subset of the OASIS-38 cohort and the complete set of
the Kirby-21 study.39 All images are reoriented to match the approximate orientation of the stan-
dard template images (MNI152) using fslreorient2std,49 which only applies 0 deg, 90 deg,
180 deg, or 270 deg rotations.

2.2.1 OASIS-3

OASIS-38 is the third release of the Open Access Series of Imaging Studies (OASIS)50 and
includes retrospective data from 1379 individuals collected over a period of 30 years by the
Knight Alzheimer Disease Research Center at Washington University in St. Louis. Of these
1379 individuals, 755 were cognitively normal adults, whereas the remaining individuals were
at different stages of cognitive decline and ranged in age from 42 to 95 years. OASIS-3 comprises
over 2800 imaging sessions that include T1-w, T2-w, FLAIR, ASL, SWI, resting-state BOLD,
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and DTI. For our study, we selected a random sample of 179 subjects from the OASIS-3 cohort.
For each of these subjects, we randomly selected one T1-w image from the available imaging
sessions to use in our experiments. See the Supplementary Material for the list of selected
images.

2.2.2 Kirby-21

Kirby-2139 is part of the multi-modal MRI reproducibility resource and includes scan–rescan
imaging sessions of 21 healthy subjects with no history of neurological conditions. Each subject
underwent two identical 1-h scanning sessions, with a short break in between and repositioning
before the second session. The resulting dataset comprises 42 sessions that include MPRAGE,
FLAIR, DTI, resting state fMRI, and so on. For our study, we used the MPRAGE images from
the scan–rescan sessions of the 21 subjects.

2.3 Brain Segmentation Pipelines
We include two popular whole head MRI segmentation pipelines to evaluate the effects of defac-
ing on brain segmentation.

2.3.1 SLANT

The SLANT method employs multiple independent 3D convolutional networks for segmenting
the brain.35,36 Each of the networks is only responsible for a particular spatial region, thus the task
of each network is simplified to focus on patches from a similar portion of the brain. To enable
this, affine registration, N4 bias field correction, and intensity normalization are employed to
roughly normalize each brain to the same space before segmentation. After each network per-
forms its duty, the segmentation labels are fused together to form the final labels for the 132
anatomical regions of the brain. SLANT is publicly available (in a GitHub repository at:
https://github.com/MASILab/SLANTbrainSeg) and is reported to have high intra- and inter-scan
protocol reproducibility.51 In this study, we use version 1.0.3 with GPU support.

2.3.2 FreeSurfer

FreeSurfer37 is a widely used tool in the neuroimaging community that provides automated
processing of MRI data to obtain measurements of various brain structures. In this study, we
use the segmentation file, aparcþ aseg:mgz, generated by FreeSurfer’s “recon-all” method.
The file contains information about the cortical regions and subcortical structures segmented
by FreeSurfer, including the Desikan–Killiany atlas-based parcellation of the cerebral cortex and
the segmentation of subcortical structures, such as left and right caudate, putamen, pallidum,
thalamus, lateral ventricles, hippocampus, and amygdala. We use version 7.3.2.

3 Experimental Setup

3.1 Defacing Quality Check
In Sec. 4, we present the results of application of the eight defacing algorithms on our total of 200
images (179 T1-weighted images from OASIS-3 and 21 MPRAGE images from the first session
of each subject in the Kirby-21). We initially review the resulting defaced images manually; this
review is a first stage quality check that is focused on identifying any problems in the images.
Each image is checked by viewing the axial slices from lateral to superior and then again from
superior to lateral. This initial review classifies the output of all eight defacing algorithms into
three categories:

Success: The particular defacing algorithm processes the MR image as expected. Although
some facial voxels that are supposed to be removed may remain, there are not any unre-
coverable errors as observed in the other two categories.

Type I failure: The defacing algorithm fails to detect facial features or run properly. As a
consequence, the face remains untouched and may still be recognizable.
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Type II failure: Some non-zero proportion of the brain is removed due to the excesses of the
defacing algorithm.

3.2 Quantify the Effects of Defacing
To quantify the effects of the defacing algorithms, we first applied them—using their default
parameters—to the 179 T1-weighted MR images from OASIS-3. After the completion of the
quality check outlined in Sec. 3.1, we include only those defacing results that are classified
as “success” for our subsequent analyses. We then run both SLANT and FreeSurfer on the origi-
nal data as well as on the non-excluded output of each defacing algorithm. This results in seg-
mentation label images from both SLANTand FreeSurfer for each of the subjects from OASIS-3
that passed our defacing quality check. Hereafter, we refer to the segmentation from the original
data as the “unaltered result,” and the segmentation from the defaced data as the “defacing result.”
We consider the segmentation result on the unaltered image as the ground truth and compare the
defacing result to this ground truth by calculating the DSC,38,52 using

EQ-TARGET;temp:intralink-;e001;114;573DSC ¼ 1

K

XK

i¼1

2jXi ∩ Yij
jXij þ jYij

; (1)

where K is the total number of labeled regions in the brain, Xi and Yi are the binary segmentation
masks for region i in the unaltered and defacing results, respectively. Here, j · j denotes the car-
dinality of the corresponding mask (i.e., the number of voxels).

3.3 Compare Defacing with Scan–Rescan
After quantifying the effects of defacing on segmentation by computing the DSC, we have a
question:

Are these effects comparable or worse than those of rescanning a subject followed by
registration?

To answer this question, we used the MPRAGE images from the scan–rescan sessions of the
21 subjects from the Kirby-21 cohort. This question is aimed at determining if any of the defac-
ing methods have no more negative effect on SLANTand FreeSurfer than the variance associated
with rescanning.

First, we apply the eight defacing algorithms to the MPRAGE images from the first scan,
using default parameters. We then exclude any defaced images that did not pass our quality
check, see Sec. 3.1, by using only those images that are classified as “success” for the subsequent
steps. We then run SLANT and FreeSurfer, on both the original data and the defaced data. This
enables us to obtain segmentation label images for each set of data. To quantify the effects of
defacing on segmentation, we compute the DSC between the segmentation results obtained from
the original and defaced data, as we did in the previous section. This is the same procedure that
we used for the 179 OASIS-3 subject, as described in Sec. 3.2.

The availability of the second contemporaneous scan of each of the Kirby-21 participants
allows us to take the additional step of registering the rescan (or second) MPRAGE image to the
corresponding first MPRAGE of the same participant. We do this registration step using three
different types of registration methods: rigid, affine, and deformable (SyN) implemented by
ANTs.46,53 After registration, we run SLANT and FreeSurfer on the rescan data registered to
the first scan. We then compute the DSC to measure the difference between the segmentation
results from the two scans.

4 Experimental Results

4.1 Quality Check
We report the results of our quality check in Table 1. Quickshear has a dramatic number of failure
cases, most of which are “type II failure” cases—which is when some proportion of the brain is
removed due to excessive (or inappropriate) defacing. We attribute this outcome to the depend-
ence of Quickshear on the quality of the input brain mask. In our experiments, the brain masks
were generated by BET without fine-tuning the parameters for each brain and thus can be unre-
liable. Upon review, we regard the vast majority of Quickshear “type II failure” cases as a result
of BET and could possibly be rectified with an alternative skull-stripping software. However, we
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note that if the skull-stripping is done to a high enough standard then it can serve to deidentify an
image and the additional step of defacing is superfluous. Defacer has the highest incidence of
“type I failure” cases, wherein the algorithm encountered issues with detecting facial features,
resulting in untouched faces in 16 subjects; MRI_Deface is the only other method to have “type I
failure” cases, though it is only seven of the 200 subjects we used in our studies—six in OASIS-3
and one in Kirby-21. Pydeface has zero failure cases, unlike its counterparts—FSL_deface and
MRI_Deface—that achieve defacing in a comparable manner, i.e., by applying a predefined
mask (or masks) after registration. AnonyMI and both versions of mri_reface also have zero
failure cases. See the Supplementary Material for complete details about the quality check
results.

4.2 OASIS-3
In our first experiment, we compare the performance of SLANT and FreeSurfer on unaltered
images with their performance on defaced images. As outlined in Sec. 3.2, we applied the eight
defacing algorithms to our OASIS-3 cohort of 179 subjects and then computed the DSC overlap
that occurs between running SLANT (or FreeSurfer) on the unaltered images and the defaced
images. In essence, we treat running SLANT (or FreeSurfer) on the unaltered images as a proxy
for a gold standard segmentation; what underpins this approach is the assumption that defacing
does no harm to the underlying brain data and does not change the position and orientation of the
brain, in which case we can compare the segmentations of unaltered data to defaced data. In
Fig. 2, we visualize these results as “raincloud” plots in which the “raindrops” are the mean
DSC of the labels per subject, and the “clouds” are the probability densities of the mean
DSC. The size of each “cloud” is scaled by the number of “raindrops,” and the colors correspond

Table 1 Manual quality check. The results of our manual quality check of all eight defacing algo-
rithms across the 179 subjects of the OASIS-3 cohort8 and the 21 participants of the Kirby-21
dataset.39 Detailed results are included in the Supplementary Material.

Algorithm Dataset Total Success Type I failure Type II failure

Defacer23 OASIS-3 179 163 16 0

Kirby-21 21 21 0 0

Quickshear19 OASIS-3 179 78 0 101

Kirby-21 21 20 0 1

Pydeface22 OASIS-3 179 179 0 0

Kirby-21 21 21 0 0

MRI_Deface18 OASIS-3 179 136 7 36

Kirby-21 21 21 0 0

FSL_deface21 OASIS-3 179 142 0 37

Kirby-21 21 21 0 0

Face_Masking20 OASIS-3 179 176 0 3

Kirby-21 21 21 0 0

AnonyMI24 OASIS-3 179 179 0 0

Kirby-21 21 21 0 0

mri_reface_0.225 OASIS-3 179 179 0 0

Kirby-21 21 21 0 0

mri_reface_0.325 OASIS-3 179 179 0 0

Kirby-21 21 21 0 0
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to different defacing algorithms. The SLANT results have the “cloud” of the “raincloud” on the
left, whereas the FreeSurfer results have the “cloud” on the right. We note that these results only
include data that passed our quality check (see Sec. 3.1), which explains why Quickshear has
considerably fewer “raindrops” and smaller “clouds” than the other algorithms due to its large
number of failure cases (see Table 1). We observe that for both SLANT and FreeSurfer across all
tested defacing algorithms, there is not a single case where DSC ¼ 1, which indicates that defac-
ing always has an impact on the segmentation results from both SLANTand FreeSurfer. Also, the
DSC from the SLANT segmentations are individually and collectively higher than those from the
FreeSurfer segmentations, and the FreeSurfer segmentations have a considerably larger spread.
Interestingly, neither segmentation algorithm depends strongly on which defacing method is
used. A detailed discussion of these results is provided in Sec. 5.4.

Presenting the mean DSC per subject, as in Fig. 2, offers an incomplete picture of the per-
formance of SLANT and FreeSurfer. Unfortunately, due to the large number of labels provided
by both SLANT and FreeSurfer, it is difficult to present all the results in this paper. As a com-
promise, we present DSC for some representative regions of interest (ROIs) for both SLANTand
FreeSurfer in Fig. 3 and include results for all available labels in the Supplementary Material. We
note that the ROIs defined by SLANTand FreeSurfer differ slightly, as they were developed from
different atlases that contain different ROIs. Nonetheless, for Fig. 3, we have chosen anatomi-
cally comparable ROIs that share enough similarities for an informed side-by-side comparison.
The y-axis in each subplot covers the range of the DSC for that particular label. Refraining from
setting uniform y-axis limits for all subplots may hinder the comparison between ROIs, but it
does allow for a clearer view of the distribution of the DSC for each of the included labels. We
observe that FreeSurfer results have a large range and more outliers than those of SLANT. The
more extreme FreeSurfer outliers indicate instances of dramatic region specific disagreement. In
Sec. 5, we provide examples of such outliers and discuss these results.

Fig. 2 DSC between the segmentations of the unaltered images and the defaced images in the
OASIS-3 cohort: In each column, we present the results for a specific defacing algorithm with two
“raincloud” plots. The raincloud plots with the “cloud” on the left correspond to the SLANT com-
parison, whereas the plots with the “cloud” on the right correspond to FreeSurfer. The individual
“raindrops” correspond to the mean DSC of the labels (by SLANT or FreeSurfer) of a specific sub-
ject from the OASIS-3 cohort.
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4.3 Kirby-21
Our second experiment is focused on the Kirby-2139 dataset. We first compare the performance
of SLANTand FreeSurfer on the unaltered images with their performance on the defaced images.
This portion of the experiment is similar to our first experiment on the OASIS-3 cohort (see
Sec. 4.2) except with a smaller population size. This allows us to demonstrate the consistency
of the previously observed behaviors across two different datasets. Given the rescan images in the
Kirby-21 dataset, we can ascertain if the effects of defacing are comparable to that of scan–rescan
differences. This is the second comparison we explore in this experiment. Both of these com-
parisons are presented in Fig. 4, using a visualization identical to that of Fig. 2. To prevent con-
fusion, we separate the results from the defacing algorithms and the results from the “rescan and
registration” component with a vertical line.

Despite the smaller sample size of the Kirby-21 (N ¼ 21), it exhibits a very similar trend for
the defacing algorithms—left side of Fig. 4—as that of the OASIS-3 (N ¼ 179) cohort as shown
in Fig. 2. For the “rescan and registration” component, shown on the right side of Fig. 4, we
observe that the groups are significantly lower than those of the defacing algorithms. Specifically,
for the SLANT segmentation method, the DSC for the “rescan and registration” results are
∼0.018 lower than those for the defacing methods. While for the FreeSurfer segmentations, the
difference is even greater, with the DSC for the “rescanþ registration” group being about 0.039
lower than the defacing methods. These findings suggest that rescanning followed by registration
may have a greater impact on brain segmentation consistency than defacing alone. Moreover,

Fig. 3 DSC for the segmentation (of SLANT or FreeSurfer) between unaltered and defaced
images for seven ROIs for subjects from the OASIS-3 cohort. The top collection of images shows
SLANT labels on a particular subject from the OASIS-3 cohort. Surrounding the MRI are seven
raincloud plots that correspond to specific ROIs. The bottom collection of images shows the
FreeSurfer labels for the same OASIS-3 subject and raincloud plots for anatomically comparable
ROIs.
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these results suggest that FreeSurfer may be more susceptible than SLANT to variation from
“rescanþ registration.” More detailed discussion of these results is provided in Sec. 5.

5 Discussion

5.1 Quality Check Outcomes
Figure 5 presents examples of type II failure cases described in Sec. 3.1, where a certain pro-
portion of the brain is removed due to excessive defacing. In the figure, we see the columns from
left to right show the unaltered data and the results of FSL_deface, MRI_Deface, and
Quickshear; and the rows from top to bottom are a 3D reconstruction of the MR data, sagittal,
coronal, and axial views of the MR data overlaid with SLANT labels. As this subject failed the
quality check, the SLANT and FreeSurfer results were not included in subsequent analyses. The
failure of Quickshear is readily observable as a sizeable portion of the frontal lobe has been
removed through the defacing process. The errors of both FSL_deface and MRI_Deface might,
as first viewing, not be as obvious; however, review of their coronal slices through the frontal
lobe, and comparison with the unaltered image, readily demonstrate the removal of a portion of
the brain. As important as defacing is for providing greater access to MRI databases, it is far more
fundamental that those defacing algorithms do not remove any portion of the brain. As such,
those algorithms that had any type II failure—Quickshear, MRI_Deface, FSL_deface, and
Face_Masking—are particularly worrisome. It might be argued that the type II failure cases
of Quickshear can be addressed with better quality skull-stripping; this is not satisfactory,
because if we have to do some high quality skull-stripping and manual review to ensure accurate
brain masks, then why not release the skull-stripped images instead of the Quickshear-defaced
images. This requirement of Quickshear is a hindrance to its adoption in many settings. The
failures of MRI_Deface (20.1% of OASIS-3), FSL_deface (20.7% of OASIS-3), and
Face_Masking (1.7% of OASIS-3) are disappointing and highlight that any use of defacing algo-
rithms should be followed by a quality check to establish no such errors. We note that
FSL_deface was used in the original processing of the UK BioBank21 data and, unfortunately,
the UK BioBank does not report any manual review of these defaced images. Finally, we recall
that type I failure cases are when the defacing algorithm failed to deface the underlying image.

Fig. 4 DSC between segmentations of the unaltered first scan, the defaced first scan, and aligned
rescan on the Kirby-21 dataset. In each column, we present the results for the segmentation com-
parison between the unaltered first scan and either a defaced first scan or the unaltered rescan
aligned to the first scan. The raindcloud plots are explained in Fig. 2. Key: “rescanþ rigid”—rescan
registered with rigid registration; “rescanþ affine”—rescan registered with affine registration;
“rescanþ syn”—rescan registered with SyN based deformable registration.
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Such cases occurred with Defacer (8.9% of OASIS-3) and MRI_Deface (3.9% of OASIS-3), thus
further highlighting the necessity of manual review of the defaced output.

5.2 Success and Failure Cases of Defacing
As we note in Sec. 5.1, reliable defacing algorithms need to remove facial features effectively and
ensure that the entire brain is left intact without causing any damage. Although we did not spe-
cifically evaluate the protection provided by defacing algorithms against facial recognition, we
analyzed the success and failure rates of each algorithm. Of the defacing algorithms examined in
this study, five of them exhibited instances of failure. Of these five, four had more than 15
instances of failure across the 200 testing samples (179 from OASIS-3 cohort and 21 from the
Kirby-21 dataset). Use of these algorithms in a practical setting requires some level of super-
vision, to prevent catastrophic failures, such as the removal of half of the frontal lobe due to
excessive defacing—see Fig. 5 for an example. However, this poses a significant challenge for
researchers who need to apply defacing to large datasets since it can be time-consuming to ensure
quality checks. AnonyMI, Pydeface, and both versions of mri_reface did not encounter any fail-
ure cases during our experiments. Nevertheless, it is important to acknowledge that passing our
quality check does not guarantee successful defacing, as our definition of “success” only verifies
that the algorithm processes the MR image as intended, despite the possibility of some facial
voxels that were meant to be removed remaining in the image. For example, from Fig. 1, it is

Original FSL_deface MRI_Deface Quickshear

Fig. 5 Example of type II failure cases. The columns from left to right show the unaltered (original)
data and the results of FSL_deface, MRI_Deface, and Quickshear. The rows from top to bottom
show 3D renderings of the head before and after defacing by the three algorithms, then sagittal,
coronal, and axial slices with their corresponding SLANT segmentation overlaid. The red cross
marks the same position in each image and shows where brain voxels are removed by defacing.
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clear that some facial features, such as eyes and ears, were not completely removed after using
Pydeface for defacing.

5.3 FreeSurfer Outliers
In this section, the FreeSurfer outliers we observe in Fig. 2 for the OASIS-3 cohort and Fig. 4 for
the Kirby-21 dataset are further explored. These outliers represent the most disagreement
between FreeSurfer run on the unaltered data versus being run on a defaced image. We show
a specific example of an outlier from the Kirby-21 dataset in Fig. 6. In the image, we show axial,
coronal, and sagittal views of the FreeSurfer segmentations overlaid on the MR image for the
original (unaltered) data, the data processed by the defacing algorithms, and also the registered
rescan results, which we only have for the Kirby-21 dataset. Each subimage features an arrow
highlighting the same location in each view; we focus on this particular point as the labels
assigned by FreeSurfer on the unaltered data differ dramatically with the processed data. In using
the term “processed,” we are referring to the application of either a defacing algorithm or the
registration of the rescan image followed by FreeSurfer. In the original image, the location is
labeled as the right post-central gyrus (ctx-rh-postcentral). However, in the processed data, the
segmentation label for this same location is consistently right pre-central gyrus (ctx-rh-
precentral). It is worth noting that this difference in segmentation labels occurred regardless
of which processing method was applied, indicating that the label for this region is highly sen-
sitive to any processing. In Fig. 7, we present FreeSurfer segmentations corresponding to the two
“worst” outliers of Face Masking shown in Fig. 2, with DSCs below 0.7. Although defacing did
not damage any brain voxels, the segmentation of the defaced image presents a problem. A large

Original

rescan+affine

Defacer Quickshear Pydeface MRI_Deface FSL_deface Face_Masking

AnonyMI mri_reface_0.2 mri_reface_0.3Original rescan+rigid rescan+syn

Fig. 6 FreeSurfer outlier comparison. MRIs overlaid with their corresponding FreeSurfer segmen-
tations. The arrows point to a location where the label given by FreeSurfer segmentation changed
dramatically after processing either by a defacing algorithm or the registration of the rescan image.
We repeat the original FreeSurfer results on both the top and bottom left column for easier com-
parison across the rows.

Gao et al.: Reproducibility evaluation of the effects of MRI. . .

Journal of Medical Imaging 064001-12 Nov∕Dec 2023 • Vol. 10(6)



proportion of one hemisphere of the brain is almost unlabeled, with some crushed-glass-like
labels scattered around. The cause for such failure is unclear and we note that these are the worst
examples among segmentations from images that passed our defacing quality check (see
Sec. 5.1). Our manual quality check does remove images that have been damaged by the defacing
processing; however, it clearly does not indicate that subsequent processing will be accurate.

5.4 Effects of Defacing on Brain Segmentation
We used DSC to quantify the differences between the segmentation results obtained from the
defaced MR images and the unaltered MR images. Figure 2 shows that both SLANT and
FreeSurfer segmentations obtained from the defaced MR images differ from those obtained from
the original MR images, suggesting that defacing has a potentially detrimental impact on brain
segmentation. Moreover, the degree of this impact varies slightly across different defacing meth-
ods, with a stronger effect observed on FreeSurfer segmentation than on SLANT segmentation,
as evidenced by the consistently lower distribution of DSC and the number of outliers for
FreeSurfer. Notably, the outliers with low DSC typically represent dramatic changes in the seg-
mentations, one of which is shown in Fig. 6, where a significant portion of the label for the right
post-central gyrus (ctx-rh-postcentral) shifts after defacing. This shift occurs across all defacing
methods and even in the rescanning group, indicating that the segmentation of this region by
FreeSurfer is highly sensitive to changes in the MR image. Another, more extreme case is shown
in Fig. 7, where the segmentation failed to label almost the entire hemisphere of the brain after
defacing, resulting in the lowest DSC among all outliers.

For SLANT segmentation, the removal or alteration of the face affects the affine registration
to the MNI atlas, the N4 bias field correction, and the intensity normalization. In addition, as the
input patches around the face are different from the original, the neural network outputs also
differ. As SLANT aggregates the outputs of multiple neural networks to generate the final seg-
mentation label image, these differences are reflected in the final results. Given that SLANT

Original

R L R L R L R L

Face_Masking Original Face_Masking

Fig. 7 Two FreeSurfer outliers. MRIs overlaid with their corresponding FreeSurfer segmentations.
The left two columns are results from unaltered (original) MRI and defaced by Face_Masking for
one subject, and the right two columns are from another subject. These are the worst two subjects
in our comparison with mean DSC below 0.7. Key: “L” denotes left and “R” denotes right.
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breaks down an MR image into 27 smaller regions for processing, it is then somewhat surprising
that the effects of defacing can be observed in regions that are “far-away” from the changed facial
features—such as changes in the occipital lobe, see the Supplementary Material for an example.
FreeSurfer segmentation involves registrations of multiple atlases and mapping of labels from
these atlas spaces. When the facial voxels are removed or changed, the resulting registered image
will differ, unless flawless and perfectly matching brain masks were used to focus the registration
on the brain, which is not feasible. Consequently, the labels mapped from the atlases can—and do
—end up in different locations.

According to Fig. 4, the DSC between brain segmentations from registered rescans and the
unaltered first scans are lower than the DSC between segmentations from defaced images and the
original (unaltered) images. This suggests that the changes induced by rescanning a subject have
a greater impact on brain segmentation than defacing alone, in general. However, this does not
necessarily imply that the impact of defacing is negligible. Instead, it only provides a basis for
comparison that helps us understand the magnitude of the impact. There are multiple factors that
contribute to the effects of rescanning followed by alignment via registration. One factor is the
light geometric deformation of the brain that occurs between the first scan and the rescan, which
can happen due to the subjects being repositioned in the magnetic field. Another factor is the
interpolation that occurs during the registration, which may also impact the segmentation.

5.5 Recommendations
We cannot overstate the importance of manual review of defacing algorithms; it is particularly
critical if the data are being made available for public dissemination. Our current recommen-
dation for a preferred defacing algorithm is mri_reface (version 0.3) for the following reasons:

(i) It is a user-friendly application that is readily incorporated in existing scripting pipelines;
(ii) It exhibits a DSC, which is slightly above average for the segmentation results between the

unaltered and defaced images;
(iii) It is robust to low image quality and different head positions, producing consistent results

that resemble unaltered MR images.
(iv) By manipulating the facial features to match a template, it clearly provides a non-

identifiable image.

5.6 Strengths and Limitations of Current Study
We include eight defacing algorithms that cover the majority of popular choices used in the past
15 years. To ensure that the processing steps were performed accurately, we have communicated
with the authors of some of these defacing algorithms, including mri_reface,25 AnonyMI,24 and
Defacer.23 We include two pipelines to analyze the effects of defacing on brain segmentation.
One pipeline, SLANT, is based on deep-learning, whereas the other, FreeSurfer, is a widely
popular multi-atlas based approach. The inclusion of these two pipelines allows for a more com-
prehensive comparison of the results obtained. For our analysis, we have used a total of 200 MR
images and performed a quality check aimed to ensure the reliability of the results.

Due to the scope of this study—200 subjects, multiple defacing algorithms, and two neuro-
imaging pipelines—we only investigate the effects of defacing on brain segmentation and used
only DSC to quantify these effects. Although DSC provides information on the extent of overlap
between segmentation labels, it does not consider other aspects, such as shape, topology, or the
connected components. We did not study volumetric changes, which is a common downstream
task in medical image analysis. This adds to the limitations of this study. For a more compre-
hensive comparison, additional metrics and analyses should be included.

As we ran the defacing algorithms on different servers with varying hardware and operating
systems, we do not report the run time of each algorithm or its memory usage. As a result, we
were unable to provide evidence for questions regarding algorithm efficiency. Furthermore, we
did not provide evidence to support our recommendation of mri_reface. We also did not measure
the effectiveness of the defacing algorithms in protecting against identification, which is a crucial
aspect to consider when selecting a reliable defacing algorithm.
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6 Conclusion
Defacing MR images has effects on brain segmentation. While the effects, quantified using DSC,
are less than those of rescanning followed by registration, they are still noticeable and should not
be disregarded. In particular, it is important to pay extra attention to the possibility of catastrophic
failures of brain segmentation caused by defacing. In the worst scenario, brain voxels can be
removed due to excessive defacing by some algorithms. To prevent this problem, a thorough
quality check is necessary before using defaced images. Using robust algorithms, which in our
experience were mri_reface and AnonyMI, can alleviate the burden of manual review. There are
other scenarios where the problems are less noticeable but can also have devastating effects on
neuroanalysis. For instance, the output of a segmentation pipeline for a specific brain region can
be highly sensitive to changes in MR images. Or, in some extreme cases, the segmentation pipe-
line malfunctions on the entire hemisphere of the brain in the defaced MRI and fails to output any
labels—see Fig. 7 for example. To address these issues, it can be helpful to use multiple seg-
mentation pipelines, especially those that are more invariant to changes of non-brain voxels in
MR images, in order to draw reliable conclusions.

Disclosures
No conflicts of interest.

Code, Data, and Materials Availability
The datasets used in this study are open-access and can be accessed through straightforward
online applications. All software packages used in this study are publicly available. We provide the
URLs for the datasets and software packages in the Supplementary Material. For researchers
interested in reproducing our analysis results, we also list the sample subjects from the datasets
in the Supplementary Material.

Acknowledgments
This work was supported by the National Institutes of Health through the National Institute of
Neurological Disorders and Stroke, Grant No. 1R21NS120286-01 (PI: J.L. Prince), and the
National Institute of Biomedical Imaging and Bioengineering, Grant No. 1R01EB017230-01A1
(PI: B.A. Landman).

References
1. R. Smith-Bindman et al., “Trends in use of medical imaging in US Health Care Systems and in Ontario,

Canada, 2000-2016,” JAMA 322, 843–856 (2019).
2. National Institutes of Health, “NIH data management and sharing activities related to public access and open

science,” (2023).
3. A. Di Martino et al., “The autism brain imaging data exchange: towards a large-scale evaluation of the intrin-

sic brain architecture in autism,” Mol. Psychiatry 19(6), 659–667 (2014).
4. C. R. Jack, Jr. et al., “The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods,” J. Magn.

Reson. Imaging 27, 685–691 (2008).
5. D. C. Van Essen et al., “The human connectome project: a data acquisition perspective,” NeuroImage 62(4),

2222–2231 (2012).
6. R. Kötter et al., “A probabilistic atlas and reference system for the human brain: International Consortium for

Brain Mapping (ICBM),” Philos. Trans. R. Soc. London Ser. B Biol. Sci. 356, 1293–1322 (2001).
7. A. Carass et al., “Longitudinal multiple sclerosis lesion segmentation data resource,” Data Brief 12, 346–350

(2017).
8. P. J. LaMontagne et al., “OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal

aging and Alzheimer disease,” medRxiv 2019.12.13.19014902 (2019).
9. Y. He et al., “Retinal layer parcellation of optical coherence tomography images: data resource for multiple

sclerosis and healthy controls,” Data Brief 22, 601–604 (2019).
10. O. Commowick et al., “Multiple sclerosis lesions segmentation from multiple experts: the MICCAI 2016

challenge dataset,” NeuroImage 244, 118589 (2021).
11. A. Tanner, Our Bodies, Our Data: How Companies Make Billions Selling Our Medical Records, Beacon

Press (2017).
12. N. Wetsman, “Hospitals are selling treasure troves of medical data: what could go wrong?” (2021).

Gao et al.: Reproducibility evaluation of the effects of MRI. . .

Journal of Medical Imaging 064001-15 Nov∕Dec 2023 • Vol. 10(6)

https://doi.org/10.1117/1.JMI.10.6.064001.s01
https://doi.org/10.1117/1.JMI.10.6.064001.s01
https://doi.org/10.1001/jama.2019.11456
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1002/jmri.21049
https://doi.org/10.1002/jmri.21049
https://doi.org/10.1016/j.neuroimage.2012.02.018
https://doi.org/10.1098/rstb.2001.0915
https://doi.org/10.1016/j.dib.2017.04.004
https://doi.org/10.1016/j.dib.2018.12.073
https://doi.org/10.1016/j.neuroimage.2021.118589


13. X. Li et al., “The first step for neuroimaging data analysis: DICOM to NIfTI conversion,” J. Neurosci.
Methods 264, 47–56 (2016).

14. D. Mason et al., “pydicom/pydicom: pydicom 2.3.1,” (2022).
15. F. W. Prior et al., “Facial recognition from volume-rendered magnetic resonance imaging data,” IEEE Trans.

Inf. Technol. Biomed. 13(1), 5–9 (2008).
16. J. C. Mazura et al., “Facial recognition software success rates for the identification of 3D surface recon-

structed facial images: implications for patient privacy and security,” J. Digit. Imaging 25, 347–351 (2012).
17. C. G. Schwarz et al., “Identification of anonymous MRI research participants with face-recognition soft-

ware,” New Engl. J. Med. 381, 1684–1686 (2019).
18. A. Bischoff-Grethe et al., “A technique for the deidentification of structural brain MR images,” Hum. Brain

Mapp. 28, 892–903 (2007).
19. N. Schimke and J. Hale, “Quickshear defacing for neuroimages,” in Proc. 2nd USENIX Conf. Health Security

and Privacy, HealthSec’11, USENIX Association, Vol. 11 (2011).
20. M. Milchenko and D. Marcus, “Obscuring surface anatomy in volumetric imaging data,” Neuroinformatics

11(1), 65–75 (2013).
21. F. Alfaro-Almagro et al., “Image processing and quality control for the first 10,000 brain imaging datasets

from UK Biobank,” NeuroImage 166, 400–424 (2018).
22. O. F. Gulban et al., “poldracklab/pydeface: v2.0.0,” (2019).
23. Y. U. Jeong et al., “De-identification of facial features in magnetic resonance images: software development

using deep learning technology,” J. Med. Internet Res. 22(12), e22739 (2020).
24. E. Mikulan et al., “A comparative study between state-of-the-art MRI deidentification and AnonyMI, a new

method combining re-identification risk reduction and geometrical preservation,” Hum. Brain Mapp. 42,
5523–5534 (2021).

25. C. G. Schwarz et al., “Changing the face of neuroimaging research: comparing a new MRI de-facing tech-
nique with popular alternatives,” NeuroImage 231, 117845 (2021).

26. A. Khazane et al., “DeepDefacer: automatic removal of facial features via U-Net image segmentation,”
arXiv:2205.15536 (2022).

27. A. de Sitter et al., “Facing privacy in neuroimaging: removing facial features degrades performance of image
analysis methods,” Eur. Radiol. 30(2), 1062–1074 (2020).

28. E. E. L. Buimer et al., “De-identification procedures for magnetic resonance images and the impact on struc-
tural brain measures at different ages,” Hum. Brain Mapp. 42(11), 3643–3655 (2021).

29. R. Bruña et al., “Modified MRI anonymization (de-facing) for improved MEG coregistration,”
Bioengineering 9(10), 591 (2022).

30. A. D. N. Initi et al., “Impact of defacing on automated brain atrophy estimation,” Insights Imaging 13(1), 54
(2022).

31. G. V. Bhalerao et al., “Systematic evaluation of the impact of defacing on quality and volumetric assessments
on T1-weighted MR-images,” J. Neuroradiol. 49(3), 250–257 (2022).

32. C. Gao et al., “Effects of defacing whole head MRI on neuroanalysis,” Proc. SPIE 12032, 120323W (2022).
33. J. Sahlsten et al., “Segmentation stability of human head and neck cancer medical images for radiotherapy

applications under de-identification conditions: benchmarking data sharing and artificial intelligence use-
cases,” Front. Oncol. 13, 1120392 (2023).

34. A. E. Theyers et al., “Multisite comparison of MRI defacing software across multiple cohorts,” Front.
Psychiatry 12, 617997 (2021).

35. Y. Huo et al., “Combining multi-atlas segmentation with brain surface estimation,” Proc. SPIE 9784, 97840E
(2016).

36. Y. Huo et al., “3D whole brain segmentation using spatially localized atlas network tiles,” NeuroImage 194,
105–119 (2019).

37. B. Fischl, “FreeSurfer,” NeuroImage 62(2), 774–781 (2012).
38. L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology 26(3), 297–302

(1945).
39. B. A. Landman et al., “Multi-parametric neuroimaging reproducibility: a 3-T resource study,” NeuroImage

54(4), 2854–2866 (2011).
40. S. M. Smith, “Fast robust automated brain extraction,” Hum. Brain Mapp. 17, 143–155 (2002).
41. B. Fischl et al., “Whole brain segmentation: automated labeling of neuroanatomical structures in the human

brain,” Neuron 33(3), 341–355 (2002).
42. M. Jenkinson and S. Smith, “A global optimisation method for robust affine registration of brain images,”

Med. Image Anal. 5(2), 143–156 (2001).
43. R. A. Priyadharshini, S. Arivazhagan, and M. Arun, “A deep learning approach for person identification

using ear biometrics,” Appl. Intell. 51, 2161–2172 (2021).
44. F. Ségonne et al., “A hybrid approach to the skull stripping problem in MRI,” NeuroImage 22(3), 1060–1075

(2004).

Gao et al.: Reproducibility evaluation of the effects of MRI. . .

Journal of Medical Imaging 064001-16 Nov∕Dec 2023 • Vol. 10(6)

https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1109/TITB.2008.2003335
https://doi.org/10.1109/TITB.2008.2003335
https://doi.org/10.1007/s10278-011-9429-3
https://doi.org/10.1056/NEJMc1908881
https://doi.org/10.1002/hbm.20312
https://doi.org/10.1002/hbm.20312
https://doi.org/10.1007/s12021-012-9160-3
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.2196/22739
https://doi.org/10.1002/hbm.25639
https://doi.org/10.1016/j.neuroimage.2021.117845
https://doi.org/10.1007/s00330-019-06459-3
https://doi.org/10.1002/hbm.25459
https://doi.org/10.3390/bioengineering9100591
https://doi.org/10.1186/s13244-022-01195-7
https://doi.org/10.1016/j.neurad.2021.03.001
https://doi.org/10.1117/12.2613175
https://doi.org/10.3389/fonc.2023.1120392
https://doi.org/10.3389/fpsyt.2021.617997
https://doi.org/10.3389/fpsyt.2021.617997
https://doi.org/10.1117/12.2216604
https://doi.org/10.1016/j.neuroimage.2019.03.041
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.2307/1932409
https://doi.org/10.1016/j.neuroimage.2010.11.047
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1016/S0896-6273(02)00569-X
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1007/s10489-020-01995-8
https://doi.org/10.1016/j.neuroimage.2004.03.032


45. B. Avants and N. Tustison, “ANTs/ANTsR brain templates. Figshare. Dataset,” (2018).
46. B. B. Avants et al., “Symmetric diffeomorphic image registration with cross-correlation: evaluating auto-

mated labeling of elderly and neurodegenerative brain,” Med. Image Anal. 12(1), 26–41 (2008).
47. L. G. Nyúl and J. K. Udupa, “New variants of a method of MRI scale normalization,” Lect. Notes Comput.

Sci. 1613, 490–495 (1999).
48. P. Vemuri et al., “Accelerated vs. unaccelerated serial MRI based TBM-SyN measurements for clinical trials

in Alzheimer’s disease,” NeuroImage 113, 61–69 (2015).
49. M. Jenkinson et al., “FSL,” NeuroImage 62(2), 782–790 (2012).
50. D. S. Marcus et al., “Open access series of imaging studies (OASIS): cross-sectional MRI data in young,

middle aged, nondemented, and demented older adults,” J. Cogn. Neurosci. 19(9), 1498–1507 (2007).
51. Y. Xiong et al., “Reproducibility evaluation of SLANT whole brain segmentation across clinical magnetic

resonance imaging protocols,” Proc. SPIE 10949, 729–736 (2019).
52. A. Carass et al., “Evaluating white matter lesion segmentations with refined Sørensen-Dice analysis,” Sci.

Rep. 10(1), 8242 (2020).
53. B. B. Avants et al., “A reproducible evaluation of ANTs similarity metric performance in brain image regis-

tration,” NeuroImage 54(3), 2033–2044 (2011).

Chenyu Gao is a PhD student in electrical and computer engineering at Vanderbilt University,
working with Prof. Bennett Landman on the harmonization of diffusion MRI. His research inter-
est is focused on image processing and computer vision with application to medical image analy-
sis. He received his BS degree in biomedical engineering from Sun Yat-sen University and his
MS degree in biomedical engineering from Johns Hopkins University, working with Prof. Jerry
Prince.

Biographies of the other authors are not available.

Gao et al.: Reproducibility evaluation of the effects of MRI. . .

Journal of Medical Imaging 064001-17 Nov∕Dec 2023 • Vol. 10(6)

https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1109/42.836373
https://doi.org/10.1109/42.836373
https://doi.org/10.1016/j.neuroimage.2015.03.026
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1162/jocn.2007.19.9.1498
https://doi.org/10.1117/12.2512561
https://doi.org/10.1038/s41598-020-64803-w
https://doi.org/10.1038/s41598-020-64803-w
https://doi.org/10.1016/j.neuroimage.2010.09.025

