Cerebellum CNN

Jump to: navigation, search

Cerebellum Parcellation with Convolutional Neural Networks

Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization (ACAPULCO) is our current cerebellum parcellation method. The associated publication is:

  • S. Han, A. Carass, Y. He, and J.L. Prince, "Automatic Cerebellum Anatomical Parcellation using U-Net with Locally Constrained Optimization", NeuroImage, 218:116819, 2020. (doi)

It can be downloaded as a Docker image. The download is 1.3GB. If you use it please cite the above paper. If you have any questions, please email Shuo Han at shan50@jhu.edu.


The instructions are at instructions.

Cerebellum labels

   "12":  "Corpus_Medullare",
   "33":  "Left_Lobules_I-III",
   "36":  "Right_Lobules_I-III",
   "43":  "Left_Lobule_IV",
   "46":  "Right_Lobule_IV",
   "53":  "Left_Lobule_V",
   "56":  "Right_Lobule_V",
   "63":  "Left_Lobule_VI",
   "60":  "Vermis_VI",
   "66":  "Right_Lobule_VI",
   "73":  "Left_Lobule_VIIAf",
   "76":  "Right_Lobule_VIIAf",
   "74":  "Left_Lobule_VIIAt",
   "70":  "Vermis_VII",
   "77":  "Right_Lobule_VIIAt",
   "75":  "Left_Lobule_VIIB",
   "78":  "Right_Lobule_VIIB",
   "83":  "Left_Lobule_VIIIA",
   "80":  "Vermis_VIII",
   "86":  "Right_Lobule_VIIIA",
   "84":  "Left_Lobule_VIIIB",
   "87":  "Right_Lobule_VIIIB",
   "93":  "Left_Lobule_IX",
   "90":  "Vermis_IX",
   "96":  "Right_Lobule_IX",
   "103": "Left_Lobule_X",
   "100": "Vermis_X",
   "106": "Right_Lobule_X"