Difference between revisions of "MedImgAnalysis2011"

From IACL
Jump to navigation Jump to search
(added matlab + mipav tutorials)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
<meta name="title" content="Medical Image Analysis 2011"/>
+
<!-- <meta name="title" content="Medical Image Analysis 2011"/> -->
 
{{h2|Medical Image Analysis 2011}}
 
{{h2|Medical Image Analysis 2011}}
  
Line 9: Line 9:
  
 
{{h3|Tutorials}}
 
{{h3|Tutorials}}
* {{file|Mia2011_matlabTut.pdf.pdf‎|Matlab tutorial|acroread}}
+
* {{file|Mia2011_matlabTut.pdf|Matlab tutorial|acroread}}
* [http://iacl.ece.jhu.edu/~john/OpenHistogram.htm Mipav - Opening images + image histograms]
+
* [http://iacl.ece.jhu.edu/~john/OpenHistogram.htm Mipav - Opening images/image histograms]
* [http://iacl.ece.jhu.edu/~john/WindowLevelTriplanar.htm Mipav - Contrast adjustment + the triplanar view]
+
** Open an image in Mipav
 +
** View an image's histogram
 +
** Change the look up table (LUT)
 +
** Adjust contrast by modifying the transfer function.
 +
* [http://iacl.ece.jhu.edu/~john/WindowLevelTriplanar.htm Mipav - Contrast adjustment/triplanar view]
 +
** Adjust contrast using window/level
 +
** Adjust contrast using "QuickLUT"
 +
** View images using the triplanar view
 +
* [http://iacl.ece.jhu.edu/~john/TransformReg.htm Mipav Transformation/Registration]
 +
** Apply a linear transformation using known parameters
 +
** Run a linear registration algorithm
 +
** Visualize registration results by overlaying the target and result images.
 
Mipav tutorials created using [http://www.debugmode.com/wink/ wink] ;)
 
Mipav tutorials created using [http://www.debugmode.com/wink/ wink] ;)
  
 
{{h3|Internal}}
 
{{h3|Internal}}
 
*[[IACL:MedImgAnalysis2011/Prep|Course Preparation]]
 
*[[IACL:MedImgAnalysis2011/Prep|Course Preparation]]

Latest revision as of 01:05, 3 July 2022

Medical Image Analysis 2011

Overview

This course covers the principles and algorithms used in the processing and analysis of medical images. Topics include, interpolation, registration, enhancement, feature extraction, classification, segmentation, quantification, shape analysis, motion estimation, and visualization. Analysis of both anatomical and functional images will be studied and images from the most common medical imaging modalities will be used. Projects and assignments will provide students experience working with actual medical imaging data.

Prerequisites

Prerequisites: 520.432 or 580.472 (Medical Imaging Systems) or 550.310 or 550.311. Probability and Statistics).

Tutorials

Mipav tutorials created using wink ;)

Internal