Difference between revisions of "MSChallenge"
(Updates and typos.) |
|||
(27 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | <meta name="title" content=" | + | <!-- <meta name="title" content="The 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge" /> --> |
− | {{ | + | {{h2|The 2015 Longitudinal MS Lesion Segmentation Challenge}} |
+ | {{MSChallengeNav}} | ||
__NOTOC__ | __NOTOC__ | ||
{{h3|I. Introduction}} | {{h3|I. Introduction}} | ||
[[Image:2015_lesions_orig.png|right|thumb|400px|2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge]] | [[Image:2015_lesions_orig.png|right|thumb|400px|2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge]] | ||
− | The Longitudinal MS Lesion Segmentation Challenge | + | The Longitudinal MS Lesion Segmentation Challenge was conducted at the [http://biomedicalimaging.org/2015 2015 International Symposium on Biomedical Imaging] in New York, NY, April 16-19. Competing teams applied their automatic lesion segmentation algorithms to MR neuroimaging data acquired at multiple time points from MS patients. Algorithms were evaluated against manual segmentations from two raters in terms of their segmentation accuracy and ability to track lesion evolution. |
− | + | 34 Teams initially registered for the Challenge coming from 15 different countries, representing 27 different institutions/universities. '''Congratulations to Team IIT Madras (First Prize), Team PVG_1 (Second Prize), and Team IMI (Third Prize and Efficiency Prize)'''! | |
+ | Information about the data is available [[MSChallenge/data|here]], and the evaluation software from [[MSChallenge/evaluation|here]]. | ||
− | |||
− | |||
− | + | {{h3|Leaderboard & Paper}} | |
+ | '''A live leaderboard is maintained on the [https://smart-stats-tools.org/lesion-challenge Smart Stats Website].''' The main Challenge article has appeared in {{iacl-pub ni}}: {{iacl-pub|author=A. Carass, S. Roy, A. Jog, J.L. Cuzzocreo, E. Magrath, A. Gherman, J. Button, J. Nguyen, F. Prados, C.H. Sudre, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, S. Ourselin, L. Catanese, H. Deshpande, P. Maurel, O. Commowick, C. Barillot, X. Tomas-Fernandez, S.K. Warfield, S. Vaidya, A. Chunduru, R. Muthuganapathy, G. Krishnamurthi, A. Jesson, T. Arbel, O. Maier, H. Handels, L.O. Iheme, D. Unay, S. Jain, D.M. Sima, D. Smeets, M. Ghafoorian, B. Platel, A. Birenbaum, H. Greenspan, P.-L. Bazin, P.A. Calabresi, C.M. Crainiceanu, L.M. Ellingsen, D.S. Reich, J.L. Prince, and D.L. Pham|title=Longitudinal Multiple Sclerosis Lesion Segmentation: Resource and Challenge|jrnl=ni|number=148(C):77-102|when=2017|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490}}<br /> | ||
+ | and a companion paper has appeared in ''Data in Brief'': | ||
+ | {{iacl-pub|author=A. Carass, S. Roy, A. Jog, J.L. Cuzzocreo, E. Magrath, A. Gherman, J. Button, J. Nguyen, P.-L. Bazin, P.A. Calabresi, C.M. Crainiceanu, L.M. Ellingsen, D.S. Reich, J.L. Prince, and D.L. Pham|title=Longitudinal multiple sclerosis lesion segmentation data resource|journal=Data in Brief|number=12:346-350|when=2017|doi=10.1016/j.dib.2017.04.004|pubmed=28491937}} | ||
− | |||
− | + | <!-- | |
− | + | {| align="center" style="width:80%; border:2px #87cefa solid; background:#f0ffff; text-align:left;" | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | {| align="center" style="width: | ||
|- | |- | ||
− | | colspan="4" style="border-top:1px solid # | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | | colspan="4" align="center" style="background:# | + | | colspan="4" align="center" style="background:#87cefa; text-align:center;" | '''''Leaderboard''''' |
|- | |- | ||
− | | colspan="4" style="border-top:1px solid # | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | |''' | + | | '''Ranking''' |
− | | | + | | style="width:80%" | '''Method Name'''<br />'''Authors'''<br />'''Paper Title'''<br />'''Paper Link(s)''' |
+ | | | ||
+ | | '''Website'''<br />'''Score''' | ||
|- | |- | ||
− | | | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
− | | | ||
|- | |- | ||
− | |''' | + | | 1 |
− | | | + | | ''MV-CNN''<br />A. Birenbaum & H. Greenspan<br />'''Multi-View Convolutional Neural Networks'''<br /> |
+ | | | ||
+ | | 91.267 | ||
|- | |- | ||
− | | | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
− | | | ||
|- | |- | ||
− | |''' | + | | 2 |
− | | | + | | ''MIAC''<br />S. Andermatt, J. Würfel, & P.C. Cattin<br />''' '''<br /> |
+ | | | ||
+ | | 91.011 | ||
|- | |- | ||
− | | | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
− | | | ||
|- | |- | ||
− | |''' | + | | 3 |
− | | | + | | ''Team PVG One''<br />A. Jesson & T. Arbel<br />'''Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
+ | | | ||
+ | | 90.698 | ||
|- | |- | ||
− | | | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
− | | | ||
|- | |- | ||
− | |''' | + | | 4 |
− | | | + | | ''Team IMI''<br />O. Maier & H. Handels<br />'''MS-Lesion Segmentation in MRI with Random Forests'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
+ | | | ||
+ | | 90.283 | ||
|- | |- | ||
− | | colspan="4" style="border-top:1px solid # | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | | | + | | 5 |
− | + | | ''ATMS''<br />O. Ghribi<br /><br /> | |
− | + | | | |
− | + | | 90.170 | |
− | |||
|- | |- | ||
− | | colspan=" | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | | | + | | 6 |
+ | | ''MV-CNN''<br />A. Birenbaum & H. Greenspan<br />'''Multi-View Convolutional Neural Networks'''<br />{{pub|doi=10.1007/978-3-319-46976-8_7|period=}} | ||
+ | | | ||
+ | | 90.070 | ||
|- | |- | ||
− | | colspan=" | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | | | + | | 7 |
− | | ''' | + | | ''Team VISAGES GCEM''<br />L. Catanese, O. Commowick, & C. Barillot<br />'''Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
+ | | | ||
+ | | 89.807 | ||
|- | |- | ||
− | | | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | | | + | | 8 |
+ | | ''Team IIT Madras''<br />S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi<br />'''Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural Networks'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} | ||
+ | | | ||
+ | | 89.159 | ||
|- | |- | ||
− | | | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
− | |||
− | | | ||
− | |||
|- | |- | ||
− | | | + | | 9 |
+ | | ''Team MS*metrix*''<br />S. Jain, D.M. Sima, & D. Smeets<br />'''Automatic Longitudinal Multiple Sclerosis Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} | ||
+ | | | ||
+ | | 88.744 | ||
|- | |- | ||
− | | | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
− | | | ||
|- | |- | ||
− | | L. | + | | 10 |
+ | | ''Lesion-TOADS''<br />N. Shiee, P.-L. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi, & D. L. Pham<br />'''A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions'''<br />{{pub|doi=10.1016/j.neuroimage.2009.09.005|pubmed=19766196|pmcid=2806481|period=}} | ||
+ | | | ||
+ | | 88.465 | ||
|- | |- | ||
− | | colspan=" | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | | | + | | 11 |
− | | | + | | ''Team CMIC''<br />F. Prados, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, & S. Ourselin<br />'''Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
+ | | | ||
+ | | 88.009 | ||
|- | |- | ||
− | | | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | | | + | | 12 |
+ | | ''MORF''<br />A. Jog, A. Carass, D.L. Pham, & J.L. Prince<br />'''Multi-Output Random Forests for Lesion Segmentation in Multiple Sclerosis'''<br />{{pub|doi=10.1117/12.2082157|pubmed=27695155|pmcid=5041594|period=}} | ||
+ | | | ||
+ | | 87.917 | ||
|- | |- | ||
− | | | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
− | | | ||
|- | |- | ||
− | | | + | | 13 |
+ | | ''Team TIG-BF''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} | ||
+ | | | ||
+ | | 87.376 | ||
|- | |- | ||
− | | colspan=" | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | | | + | | 14 |
− | | | + | | ''Team CRL''<br />X. Tomas-Fernandez & S.K. Warfield<br />'''Model of Population and Subject (MOPS) Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
+ | | | ||
+ | | 87.017 | ||
|- | |- | ||
− | | | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | | | + | | 15 |
+ | | ''Team DIAG''<br />M. Ghafoorian & B. Platel<br />'''Convolution Neural Networks for MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} | ||
+ | | | ||
+ | | 86.916 | ||
|- | |- | ||
− | | | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
− | | | ||
|- | |- | ||
− | | | + | | 16 |
+ | | ''Team TIG''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} | ||
+ | | | ||
+ | | 86.436 | ||
|- | |- | ||
− | | colspan=" | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | | | + | | 17 |
− | + | | ''Team VISAGES DL''<br />H. Deshpande, P. Maurel, & C. Barillot<br />'''Sparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} | |
+ | | | ||
+ | | 86.068 | ||
|- | |- | ||
− | | colspan=" | + | | colspan="4" style="border-top:1px solid #87cefa;"| |
|- | |- | ||
− | | | + | | 18 |
− | | | + | | ''Team BAUMIP''<br />L.O. Iheme & D. Unay<br />'''Automatic White Matter Hyperintensity Segmentation using FLAIR MRI'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
+ | | | ||
+ | | 84.140 | ||
|- | |- | ||
− | + | | colspan="4" style="border-top:1px solid #87cefa;"| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | colspan=" | ||
|- | |- | ||
|} | |} | ||
− | + | --> | |
− | |||
− | |||
− | |||
{{h3|VII. Organizers}} | {{h3|VII. Organizers}} | ||
− | '''Primary Organizer:''' <br> | + | '''Primary Organizer:''' <br /> |
[mailto:dzung.pham@nih.gov Dzung Pham], Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD | [mailto:dzung.pham@nih.gov Dzung Pham], Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD | ||
− | '''Organizing committee members:'''<br> | + | '''Organizing committee members:'''<br /> |
[http://www.cbs.mpg.de/staff/bazin-11500 Pierre-Louis Bazin], Department of Neurophysics, Max Planck Institute, Leipzig, Germany<br> | [http://www.cbs.mpg.de/staff/bazin-11500 Pierre-Louis Bazin], Department of Neurophysics, Max Planck Institute, Leipzig, Germany<br> | ||
{{iacl|~aaron/|Aaron Carass}}, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD<br> | {{iacl|~aaron/|Aaron Carass}}, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD<br> | ||
Line 194: | Line 181: | ||
{{h3|VIII. Funding support}} | {{h3|VIII. Funding support}} | ||
− | This challenge | + | This challenge was supported in part by a grant from the [http://www.ninds.nih.gov/ National Institute of Neurological Disorders and Stroke] (NINDS R01 NS070906). Funding for prizes was provided by the [http://www.nationalmssociety.org/ National Multiple Sclerosis Society]. |
Latest revision as of 00:59, 3 July 2022
The 2015 Longitudinal MS Lesion Segmentation Challenge
2015 Longitudinal MS Lesion Segmentation Challenge | ||
---|---|---|
MS Challenge Overview | MS Challenge Data | MS Challenge Evaluation |
I. Introduction
The Longitudinal MS Lesion Segmentation Challenge was conducted at the 2015 International Symposium on Biomedical Imaging in New York, NY, April 16-19. Competing teams applied their automatic lesion segmentation algorithms to MR neuroimaging data acquired at multiple time points from MS patients. Algorithms were evaluated against manual segmentations from two raters in terms of their segmentation accuracy and ability to track lesion evolution.
34 Teams initially registered for the Challenge coming from 15 different countries, representing 27 different institutions/universities. Congratulations to Team IIT Madras (First Prize), Team PVG_1 (Second Prize), and Team IMI (Third Prize and Efficiency Prize)!
Information about the data is available here, and the evaluation software from here.
Leaderboard & Paper
A live leaderboard is maintained on the Smart Stats Website. The main Challenge article has appeared in NeuroImage:
- A. Carass, S. Roy, A. Jog, J.L. Cuzzocreo, E. Magrath, A. Gherman, J. Button, J. Nguyen, F. Prados, C.H. Sudre, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, S. Ourselin, L. Catanese, H. Deshpande, P. Maurel, O. Commowick, C. Barillot, X. Tomas-Fernandez, S.K. Warfield, S. Vaidya, A. Chunduru, R. Muthuganapathy, G. Krishnamurthi, A. Jesson, T. Arbel, O. Maier, H. Handels, L.O. Iheme, D. Unay, S. Jain, D.M. Sima, D. Smeets, M. Ghafoorian, B. Platel, A. Birenbaum, H. Greenspan, P.-L. Bazin, P.A. Calabresi, C.M. Crainiceanu, L.M. Ellingsen, D.S. Reich, J.L. Prince, and D.L. Pham, "Longitudinal Multiple Sclerosis Lesion Segmentation: Resource and Challenge", NeuroImage, 148(C):77-102, 2017. (doi) (PubMed)
and a companion paper has appeared in Data in Brief:
- A. Carass, S. Roy, A. Jog, J.L. Cuzzocreo, E. Magrath, A. Gherman, J. Button, J. Nguyen, P.-L. Bazin, P.A. Calabresi, C.M. Crainiceanu, L.M. Ellingsen, D.S. Reich, J.L. Prince, and D.L. Pham, "Longitudinal multiple sclerosis lesion segmentation data resource", Data in Brief, 12:346-350, 2017. (doi) (PubMed)
VII. Organizers
Primary Organizer:
Dzung Pham, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
Organizing committee members:
Pierre-Louis Bazin, Department of Neurophysics, Max Planck Institute, Leipzig, Germany
Aaron Carass, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
Peter Calabresi, Department of Neurology, Johns Hopkins University, Baltimore, MD
Ciprian Crainiceanu, Department of Biostatistics, Johns Hopkins University, Baltimore, MD
Lotta Ellingsen, Department of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
Qing He, Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD
Jerry Prince, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
Daniel Reich, Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
Snehashis Roy, Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD
VIII. Funding support
This challenge was supported in part by a grant from the National Institute of Neurological Disorders and Stroke (NINDS R01 NS070906). Funding for prizes was provided by the National Multiple Sclerosis Society.