Difference between revisions of "CALAMITI"

From IACL
Jump to navigation Jump to search
Line 15: Line 15:
 
|-
 
|-
 
|}
 
|}
 +
 +
{{h3|Instructions}}
 +
CALAMITI requires paired multi-contrast MR images~(e.g., T1-w and T2-w) during training. The ideal structure of the data directory and naming convention are as follows:
 +
 +
 +
absolute_path_to_data
 +
    ├──train
 +
    |  └──subject_*
 +
        |        ├── H.png
 +
        |        ├── Z.png
 +
        |        └── M.png
 +
        └──val
 +
            └──subject_*
 +
                  ├── H.png
 +
                  ├── Z.png
 +
                  └── M.png
  
 
If you have questions regarding the method or software, please email Lianrui Zuo at <code>lr_zuo@jhu.edu
 
If you have questions regarding the method or software, please email Lianrui Zuo at <code>lr_zuo@jhu.edu

Revision as of 18:40, 5 September 2021

<meta name="title" content="CALAMITI"/>

Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration (CALAMITI)

Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration (CALAMITI) is our current MR harmonization method. It was designed to achieve unsupervised multi-site MR harmonization. The associated publication is:


Software

CALAMITI code (2D) 220k

Instructions

CALAMITI requires paired multi-contrast MR images~(e.g., T1-w and T2-w) during training. The ideal structure of the data directory and naming convention are as follows:


absolute_path_to_data

   ├──train
    |   └──subject_*
        |         ├── H.png
        |         ├── Z.png
        |         └── M.png
        └──val
            └──subject_*
                  ├── H.png
                  ├── Z.png
                  └── M.png

If you have questions regarding the method or software, please email Lianrui Zuo at lr_zuo@jhu.edu