Difference between revisions of "MSChallenge"

From IACL
Jump to navigation Jump to search
(First pass at new table.)
(Cleaned up the current leader board.)
Line 3: Line 3:
 
__NOTOC__
 
__NOTOC__
  
{| align="center" style="width:80%; border:2px #e0e0f5 solid; background:#f0ffff; text-align:left;"
+
 
 +
{{h3|I. Introduction}}
 +
[[Image:2015_lesions_orig.png|right|thumb|400px|2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge]]
 +
The Longitudinal MS Lesion Segmentation Challenge will be conducted at the [http://biomedicalimaging.org/2015 2015 International Symposium on Biomedical Imaging] in New York, NY, April 16-19. Competing teams will apply their automatic lesion segmentation algorithms to MR neuroimaging data acquired at multiple time points from MS patients. Algorithms will be evaluated against manual segmentations from multiple raters in terms of their segmentation accuracy and ability to track lesion evolution.
 +
 
 +
Registration for the Challenge is now closed. 34 Teams initially registered for the Challenge coming from 15 different countries, representing 27 different institutions/universities. '''Congratulations to Team IIT Madras (First Prize), Team PVG_1 (Second Prize), and Team IMI (Third Prize and Efficiency Prize)'''!
 +
 
 +
 
 +
{{h3|Current Leaderboard}}
 +
{| align="center" style="width:80%; border:2px #87cefa solid; background:#f0ffff; text-align:left;"
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| colspan="3" align="center" style="background:#e0e0f5; text-align:center;" | '''''Leaderboard'''''
+
| colspan="4" align="center" style="background:#87cefa; text-align:center;" | '''''Leaderboard'''''
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| '''Ranking'''  
 
| '''Ranking'''  
| '''Method Name'''<br />'''Authors'''<br />'''Paper Title'''<br />'''Paper Link(s)'''
+
| style="width:80%" | '''Method Name'''<br />'''Authors'''<br />'''Paper Title'''<br />'''Paper Link(s)'''
| '''Score'''
+
|
 +
| '''Website'''<br />'''Score'''
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| 1
 
| 1
 
| ''Team PVG One''<br />A. Jesson & T. Arbel<br />'''Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI'''<br />{{iacl|w/images/7/72/Andrew_Jesson.pdf|(PDF)}}
 
| ''Team PVG One''<br />A. Jesson & T. Arbel<br />'''Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI'''<br />{{iacl|w/images/7/72/Andrew_Jesson.pdf|(PDF)}}
 +
|
 +
| 90.698
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| 2
 
| 2
 
| ''Team IMI''<br />O. Maier & H. Handels<br />'''MS-Lesion Segmentation in MRI with Random Forests'''<br />{{iacl|w/images/d/d7/Oskar_Maier.pdf|(PDF)}}
 
| ''Team IMI''<br />O. Maier & H. Handels<br />'''MS-Lesion Segmentation in MRI with Random Forests'''<br />{{iacl|w/images/d/d7/Oskar_Maier.pdf|(PDF)}}
 +
|
 +
| 90.283
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 +
|-
 +
| 3
 +
| ''MV-CNN''<br />
 +
|
 +
| 90.070
 +
|-
 +
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| 4
 
| 4
 
| ''Team VISAGES GCEM''<br />L. Catanese, O. Commowick, & C. Barillot<br />'''Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions'''<br />{{iacl|w/images/5/5f/Laurence_Catanese.pdf|(PDF)}}
 
| ''Team VISAGES GCEM''<br />L. Catanese, O. Commowick, & C. Barillot<br />'''Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions'''<br />{{iacl|w/images/5/5f/Laurence_Catanese.pdf|(PDF)}}
 +
|
 +
| 89.807
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| 5
 
| 5
 
| ''Team IIT Madras''<br />S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi<br />'''Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural Networks'''<br />{{iacl|w/images/1/19/Suthirth_Vaidya.pdf|(PDF)}}
 
| ''Team IIT Madras''<br />S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi<br />'''Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural Networks'''<br />{{iacl|w/images/1/19/Suthirth_Vaidya.pdf|(PDF)}}
 +
|
 +
| 89.159
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| 6
 
| 6
 
| ''Team MS*metrix*''<br />S. Jain, D.M. Sima, & D. Smeets<br />'''Automatic Longitudinal Multiple Sclerosis Lesion Segmentation'''<br />{{iacl|w/images/b/ba/Saurabh_Jain.pdf|(PDF)}}
 
| ''Team MS*metrix*''<br />S. Jain, D.M. Sima, & D. Smeets<br />'''Automatic Longitudinal Multiple Sclerosis Lesion Segmentation'''<br />{{iacl|w/images/b/ba/Saurabh_Jain.pdf|(PDF)}}
 +
|
 +
| 88.744
 +
|-
 +
| colspan="4" style="border-top:1px solid #87cefa;"|
 +
|-
 +
| 7
 +
| ''Lesion-TOADS''<br />N. Shiee, P.-L. Bazin, & D.L. Pham<br />
 +
|
 +
| 88.465
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| 8
 
| 8
 
| ''Team CMIC''<br />F. Prados, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, & S. Ourselin<br />'''Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection'''<br /> {{iacl|w/images/3/33/Ferran_Prados_Carrasco.pdf|(PDF)}}
 
| ''Team CMIC''<br />F. Prados, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, & S. Ourselin<br />'''Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection'''<br /> {{iacl|w/images/3/33/Ferran_Prados_Carrasco.pdf|(PDF)}}
 +
|
 +
| 88.009
 +
|-
 +
| colspan="4" style="border-top:1px solid #87cefa;"|
 +
|-
 +
| 9
 +
| ''MORF''<br />
 +
|
 +
| 87.917
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| 10
 
| 10
| ''Team TIG-UCL''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{iacl|w/images/7/79/Carole_Sudre.pdf|(PDF)}}
+
| ''Team TIG-BF''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{iacl|w/images/7/79/Carole_Sudre.pdf|(PDF)}}
 +
|
 +
| 87.376
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| 11
 
| 11
 
| ''Team CRL''<br />X. Tomas-Fernandez & S.K. Warfield<br />'''Model of Population and Subject (MOPS) Segmentation'''<br />{{iacl|w/images/d/d6/Xavier_Tomas-Fernandez.pdf|(PDF)}}
 
| ''Team CRL''<br />X. Tomas-Fernandez & S.K. Warfield<br />'''Model of Population and Subject (MOPS) Segmentation'''<br />{{iacl|w/images/d/d6/Xavier_Tomas-Fernandez.pdf|(PDF)}}
 +
|
 +
| 87.017
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| 12
 
| 12
 
| ''Team DIAG''<br />M. Ghafoorian & B. Platel<br />'''Convolution Neural Networks for MS Lesion Segmentation'''<br /> {{iacl|w/images/5/52/Mohsen_Ghafoorian.pdf|(PDF)}}
 
| ''Team DIAG''<br />M. Ghafoorian & B. Platel<br />'''Convolution Neural Networks for MS Lesion Segmentation'''<br /> {{iacl|w/images/5/52/Mohsen_Ghafoorian.pdf|(PDF)}}
 +
|
 +
| 86.916
 +
|-
 +
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| 13
 +
| ''Team TIG''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{iacl|w/images/7/79/Carole_Sudre.pdf|(PDF)}}
 +
|
 +
| 86.436
 +
|-
 +
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| 14
 
| 14
 
| ''Team VISAGES DL''<br />H. Deshpande, P. Maurel, & C. Barillot<br />'''Sparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions'''<br />{{iacl|w/images/4/40/Hrishikesh_Deshpande.pdf|(PDF)}}
 
| ''Team VISAGES DL''<br />H. Deshpande, P. Maurel, & C. Barillot<br />'''Sparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions'''<br />{{iacl|w/images/4/40/Hrishikesh_Deshpande.pdf|(PDF)}}
 +
|
 +
| 86.068
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
| 15
 
| 15
 
| ''Team BAUMIP''<br />L.O. Iheme & D. Unay<br />'''Automatic White Matter Hyperintensity Segmentation using FLAIR MRI'''<br />{{iacl|w/images/c/ca/Leonardo_Iheme.pdf|(PDF)}}
 
| ''Team BAUMIP''<br />L.O. Iheme & D. Unay<br />'''Automatic White Matter Hyperintensity Segmentation using FLAIR MRI'''<br />{{iacl|w/images/c/ca/Leonardo_Iheme.pdf|(PDF)}}
 +
|
 +
| 84.140
 
|-
 
|-
| colspan="3" style="border-top:1px solid #e0e0f5;"|
+
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
 
|}
 
|}
  
 
{{h3|I. Introduction}}
 
[[Image:2015_lesions_orig.png|right|thumb|400px|2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge]]
 
The Longitudinal MS Lesion Segmentation Challenge will be conducted at the [http://biomedicalimaging.org/2015 2015 International Symposium on Biomedical Imaging] in New York, NY, April 16-19. Competing teams will apply their automatic lesion segmentation algorithms to MR neuroimaging data acquired at multiple time points from MS patients. Algorithms will be evaluated against manual segmentations from multiple raters in terms of their segmentation accuracy and ability to track lesion evolution.
 
 
Registration for the Challenge is now closed. 34 Teams initially registered for the Challenge coming from 15 different countries, representing 27 different institutions/universities. '''Congratulations to Team IIT Madras (First Prize), Team PVG_1 (Second Prize), and Team IMI (Third Prize and Efficiency Prize)'''!
 
  
  
Line 95: Line 149:
 
The evaluation software can be downloaded as {{iacl|~aaron/isbi2015/challengemetrics_matlab_only.zip|Matlab Dot M files}} (339KB) and as a compiled {{iacl|~aaron/isbi2015/challengemetrics.zip|Matlab executable}} (46MB). The evaluation metric currently include: Dice Overlap, Jaccard Overlap, PPV (positive predictive value), TPR (sensitivity, voxel based), LTPR (lesion TPR based on lesion count), LFPR (lesion FPR based on lesion count),  
 
The evaluation software can be downloaded as {{iacl|~aaron/isbi2015/challengemetrics_matlab_only.zip|Matlab Dot M files}} (339KB) and as a compiled {{iacl|~aaron/isbi2015/challengemetrics.zip|Matlab executable}} (46MB). The evaluation metric currently include: Dice Overlap, Jaccard Overlap, PPV (positive predictive value), TPR (sensitivity, voxel based), LTPR (lesion TPR based on lesion count), LFPR (lesion FPR based on lesion count),  
 
Volume Difference, Surface Difference, Segmentation Volume, Volume Change Correlation, New lesion detection TPR, and New lesion detection FPR.
 
Volume Difference, Surface Difference, Segmentation Volume, Volume Change Correlation, New lesion detection TPR, and New lesion detection FPR.
 
 
{{h3|IV. Key dates}}
 
{| align="center" style="width:50%; border:2px #efe590 solid; background:#f9f9f0; text-align:left;"
 
|-
 
| colspan="4" style="border-top:1px solid #efe590;"|
 
|-
 
| colspan="4" align="center" style="background:#efe590; text-align:center;" | '''''Important Dates'''''
 
|-
 
| colspan="4" style="border-top:1px solid #efe590;"|
 
|-
 
|'''Registration Opens'''
 
|December 15, 2014
 
|-
 
|'''Release of Training Data'''
 
|February &nbsp;4, 2015
 
|-
 
|'''Last day to register for the challenge'''
 
|March &nbsp;6, 2015
 
|-
 
|'''Release of Test Data 1'''
 
|March 18, 2015
 
|-
 
|'''Submission of Manuscript'''
 
|April &nbsp;2, 2015
 
|-
 
|'''Submission of Test Data 1 Results'''
 
|April &nbsp;6, 2015
 
|-
 
|'''Release of Test Data 2'''
 
|April 10, 2015
 
|-
 
|'''Submission of Test Data 2'''
 
|April 13, 2015
 
|-
 
|'''Challenge Day'''
 
|April 16, 2015
 
|-
 
| colspan="4" style="border-top:1px solid #efe590;"|
 
|-
 
|}
 
 
 
{{h3|V. Challenge Day Schedule}}
 
{| align="center" style="width:90%; border:2px #909095 solid; background:#f9f0f9; text-align:left;"
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| colspan="2" align="center" style="background:#909095; text-align:center;" | '''''Challenge Day Schedule'''''
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 8:30 - 8:45
 
| '''Opening Remarks'''
 
|-
 
| Dzung L. Pham
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 8:45 - 9:00
 
| [http://www.iacl.ece.jhu.edu/w/images/3/33/Ferran_Prados_Carrasco.pdf '''Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection''']
 
|-
 
| ''Team CMIC:'' F. Prados, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, & S. Ourselin
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 9:00 - 9:15
 
| [http://www.iacl.ece.jhu.edu/w/images/5/5f/Laurence_Catanese.pdf '''Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions''']
 
|-
 
| ''Team VISAGES Deux'': L. Catanese, O. Commowick, & C. Barillot
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 9:15 - 9:30
 
| [http://www.iacl.ece.jhu.edu/w/images/4/40/Hrishikesh_Deshpande.pdf '''Sparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions''']
 
|-
 
| ''Team VISAGES Trois:'' H. Deshpande, P. Maurel, & C. Barillot
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 9:30 - 9:45
 
| [http://www.iacl.ece.jhu.edu/w/images/d/d6/Xavier_Tomas-Fernandez.pdf '''Model of Population and Subject (MOPS) Segmentation''']
 
|-
 
| ''Team CRL:'' X. Tomas-Fernandez & S.K. Warfield
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 9:45 - 10:00
 
| [http://www.iacl.ece.jhu.edu/w/images/1/19/Suthirth_Vaidya.pdf '''Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural Networks''']
 
|-
 
| ''Team IIT Madras:'' S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 10:00 - 10:15
 
| [http://www.iacl.ece.jhu.edu/w/images/7/72/Andrew_Jesson.pdf '''Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI''']
 
|-
 
| ''Team PVG_1:'' A. Jesson & T. Arbel
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| 10:15 - 10:30
 
| align="center" | '''''Coffee Break'''''
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 10:30 - 10:45
 
| [http://www.iacl.ece.jhu.edu/w/images/d/d7/Oskar_Maier.pdf '''MS-Lesion Segmentation in MRI with Random Forests''']
 
|-
 
| ''Team IMI:'' O. Maier & H. Handels
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 10:45 - 11:00
 
| [http://www.iacl.ece.jhu.edu/w/images/c/ca/Leonardo_Iheme.pdf '''Automatic White Matter Hyperintensity Segmentation using FLAIR MRI''']
 
|-
 
| ''Team BAUMIP:'' L.O. Iheme & D. Unay
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 11:00 - 11:15
 
| [http://www.iacl.ece.jhu.edu/w/images/b/ba/Saurabh_Jain.pdf '''Automatic Longitudinal Multiple Sclerosis Lesion Segmentation''']
 
|-
 
| ''Team MS*metrix*:'' S. Jain, D.M. Sima, & D. Smeets
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 11:15 - 11:30
 
| [http://www.iacl.ece.jhu.edu/w/images/5/52/Mohsen_Ghafoorian.pdf '''Convolution Neural Networks for MS Lesion Segmentation''']
 
|-
 
| ''Team DIAG:'' M. Ghafoorian & B. Platel
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 11:30 - 11:45
 
| [http://www.iacl.ece.jhu.edu/w/images/7/79/Carole_Sudre.pdf '''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation''']
 
|-
 
| ''Team TIG-UCL:'' C.H. Sudre, M.J. Cardoso, & S. Ourselin
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
| rowspan="2" width="15%" | 11:45 - 12:15
 
| '''Explanation of the Evaluation, Prize Ceremony, and Discussion'''
 
|-
 
| Dzung L. Pham
 
|-
 
| colspan="2" style="border-top:1px solid #909095;"|
 
|-
 
|}
 
 
 
{{h3|VI. Visa Information}}
 
The ISBI organizers provide information about applying for a [http://biomedicalimaging.org/2015/attendees/travel-visa-information-2/ Travel Visa] to the [http://biomedicalimaging.org/2015/attendees/travel-visa-information-2/ US]. They also provide an [http://biomedicalimaging.org/2015/wp-content/uploads/2015/01/Visa-Letter-signed.pdf Invitation Letter].
 
  
  

Revision as of 21:32, 18 November 2016

<meta name="title" content="MS Challenge" />

The 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge

I. Introduction

2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge

The Longitudinal MS Lesion Segmentation Challenge will be conducted at the 2015 International Symposium on Biomedical Imaging in New York, NY, April 16-19. Competing teams will apply their automatic lesion segmentation algorithms to MR neuroimaging data acquired at multiple time points from MS patients. Algorithms will be evaluated against manual segmentations from multiple raters in terms of their segmentation accuracy and ability to track lesion evolution.

Registration for the Challenge is now closed. 34 Teams initially registered for the Challenge coming from 15 different countries, representing 27 different institutions/universities. Congratulations to Team IIT Madras (First Prize), Team PVG_1 (Second Prize), and Team IMI (Third Prize and Efficiency Prize)!


Current Leaderboard

Leaderboard
Ranking   Method Name
Authors
Paper Title
Paper Link(s)
Website
Score
1 Team PVG One
A. Jesson & T. Arbel
Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI
(PDF)
90.698
2 Team IMI
O. Maier & H. Handels
MS-Lesion Segmentation in MRI with Random Forests
(PDF)
90.283
3 MV-CNN
90.070
4 Team VISAGES GCEM
L. Catanese, O. Commowick, & C. Barillot
Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions
(PDF)
89.807
5 Team IIT Madras
S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi
Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural Networks
(PDF)
89.159
6 Team MS*metrix*
S. Jain, D.M. Sima, & D. Smeets
Automatic Longitudinal Multiple Sclerosis Lesion Segmentation
(PDF)
88.744
7 Lesion-TOADS
N. Shiee, P.-L. Bazin, & D.L. Pham
88.465
8 Team CMIC
F. Prados, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, & S. Ourselin
Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection
(PDF)
88.009
9 MORF
87.917
10 Team TIG-BF
C.H. Sudre, M.J. Cardoso, & S. Ourselin
Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation
(PDF)
87.376
11 Team CRL
X. Tomas-Fernandez & S.K. Warfield
Model of Population and Subject (MOPS) Segmentation
(PDF)
87.017
12 Team DIAG
M. Ghafoorian & B. Platel
Convolution Neural Networks for MS Lesion Segmentation
(PDF)
86.916
13 Team TIG
C.H. Sudre, M.J. Cardoso, & S. Ourselin
Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation
(PDF)
86.436
14 Team VISAGES DL
H. Deshpande, P. Maurel, & C. Barillot
Sparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions
(PDF)
86.068
15 Team BAUMIP
L.O. Iheme & D. Unay
Automatic White Matter Hyperintensity Segmentation using FLAIR MRI
(PDF)
84.140


II. Data

The overall data will be composed of three parts: 1) Training data consisting of longitudinal images from 5 patients; 2) Test data 1 consisting of longitudinal images from 10 patients; and 3) Test data 2 consisting of longitudinal images from 5 patients. Only the training data will include manual delineations when it is released to teams. These delineations will be performed by at least 2 trained raters. Test data 1 will be released in advance of the challenge day and test data 2 will be released on or shortly before the challenge day to discourage patient-specific tuning of the algorithms and computationally inefficient approaches.

Each longitudinal dataset will include T1-weighted, T2-weighted, PD-weighted, and T2-weighted FLAIR MRI with 3-5 time points acquired on a 3T MR scanner. T1-weighted images will have approximately a 1mm cubic voxel resolution, while the other scans will be 1mm in plane with 3mm sections. Accounting for the multiple time points, this constitutes approximately 80 individual data sets. To minimize the dependency of the results on registration performance and brain extraction, all images will be provided already rigidly co-registered to the baseline T1-weighted image with automatically computed skull stripping masks that may optionally be used by the teams.

The training and test data will continue to be made publicly available following the challenge, similar to the MICCAI 2008 Lesion Challenge data. Manual delineations on the test data will not be made available to the public but the organizers will provide evaluation results for any submitted segmentations. A public website for disseminating the data is currently in development.


III. Evaluation

Here are some initial guidelines.

The evaluation software can be downloaded as Matlab Dot M files (339KB) and as a compiled Matlab executable (46MB). The evaluation metric currently include: Dice Overlap, Jaccard Overlap, PPV (positive predictive value), TPR (sensitivity, voxel based), LTPR (lesion TPR based on lesion count), LFPR (lesion FPR based on lesion count), Volume Difference, Surface Difference, Segmentation Volume, Volume Change Correlation, New lesion detection TPR, and New lesion detection FPR.


VII. Organizers

Primary Organizer:
Dzung Pham, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD

Organizing committee members:
Pierre-Louis Bazin, Department of Neurophysics, Max Planck Institute, Leipzig, Germany
Aaron Carass, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
Peter Calabresi, Department of Neurology, Johns Hopkins University, Baltimore, MD
Ciprian Crainiceanu, Department of Biostatistics, Johns Hopkins University, Baltimore, MD
Lotta Ellingsen, Department of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
Qing He, Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD
Jerry Prince, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
Daniel Reich, Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
Snehashis Roy, Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD


VIII. Funding support

This challenge is supported in part by a grant from the National Institute of Neurological Disorders and Stroke (NINDS R01 NS070906). Funding for prizes is supported by the National Multiple Sclerosis Society.