Difference between revisions of "MSChallenge"
(Correction.) |
(Update article links to point to main challenge article.) |
||
Line 30: | Line 30: | ||
|- | |- | ||
| 1 | | 1 | ||
− | | ''Team PVG One''<br />A. Jesson & T. Arbel<br />'''Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI'''<br />{{ | + | | ''Team PVG One''<br />A. Jesson & T. Arbel<br />'''Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 90.698 | | 90.698 | ||
Line 37: | Line 37: | ||
|- | |- | ||
| 2 | | 2 | ||
− | | ''Team IMI''<br />O. Maier & H. Handels<br />'''MS-Lesion Segmentation in MRI with Random Forests'''<br />{{ | + | | ''Team IMI''<br />O. Maier & H. Handels<br />'''MS-Lesion Segmentation in MRI with Random Forests'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 90.283 | | 90.283 | ||
Line 51: | Line 51: | ||
|- | |- | ||
| 4 | | 4 | ||
− | | ''Team VISAGES GCEM''<br />L. Catanese, O. Commowick, & C. Barillot<br />'''Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions'''<br />{{ | + | | ''Team VISAGES GCEM''<br />L. Catanese, O. Commowick, & C. Barillot<br />'''Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 89.807 | | 89.807 | ||
Line 58: | Line 58: | ||
|- | |- | ||
| 5 | | 5 | ||
− | | ''Team IIT Madras''<br />S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi<br />'''Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural Networks'''<br />{{ | + | | ''Team IIT Madras''<br />S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi<br />'''Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural Networks'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 89.159 | | 89.159 | ||
Line 65: | Line 65: | ||
|- | |- | ||
| 6 | | 6 | ||
− | | ''Team MS*metrix*''<br />S. Jain, D.M. Sima, & D. Smeets<br />'''Automatic Longitudinal Multiple Sclerosis Lesion Segmentation'''<br />{{ | + | | ''Team MS*metrix*''<br />S. Jain, D.M. Sima, & D. Smeets<br />'''Automatic Longitudinal Multiple Sclerosis Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 88.744 | | 88.744 | ||
Line 79: | Line 79: | ||
|- | |- | ||
| 8 | | 8 | ||
− | | ''Team CMIC''<br />F. Prados, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, & S. Ourselin<br />'''Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection'''<br /> {{ | + | | ''Team CMIC''<br />F. Prados, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, & S. Ourselin<br />'''Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 88.009 | | 88.009 | ||
Line 93: | Line 93: | ||
|- | |- | ||
| 10 | | 10 | ||
− | | ''Team TIG-BF''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{ | + | | ''Team TIG-BF''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 87.376 | | 87.376 | ||
Line 100: | Line 100: | ||
|- | |- | ||
| 11 | | 11 | ||
− | | ''Team CRL''<br />X. Tomas-Fernandez & S.K. Warfield<br />'''Model of Population and Subject (MOPS) Segmentation'''<br />{{ | + | | ''Team CRL''<br />X. Tomas-Fernandez & S.K. Warfield<br />'''Model of Population and Subject (MOPS) Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 87.017 | | 87.017 | ||
Line 107: | Line 107: | ||
|- | |- | ||
| 12 | | 12 | ||
− | | ''Team DIAG''<br />M. Ghafoorian & B. Platel<br />'''Convolution Neural Networks for MS Lesion Segmentation'''<br /> {{ | + | | ''Team DIAG''<br />M. Ghafoorian & B. Platel<br />'''Convolution Neural Networks for MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 86.916 | | 86.916 | ||
Line 114: | Line 114: | ||
|- | |- | ||
| 13 | | 13 | ||
− | | ''Team TIG''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{ | + | | ''Team TIG''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 86.436 | | 86.436 | ||
Line 121: | Line 121: | ||
|- | |- | ||
| 14 | | 14 | ||
− | | ''Team VISAGES DL''<br />H. Deshpande, P. Maurel, & C. Barillot<br />'''Sparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions'''<br />{{ | + | | ''Team VISAGES DL''<br />H. Deshpande, P. Maurel, & C. Barillot<br />'''Sparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 86.068 | | 86.068 | ||
Line 128: | Line 128: | ||
|- | |- | ||
| 15 | | 15 | ||
− | | ''Team BAUMIP''<br />L.O. Iheme & D. Unay<br />'''Automatic White Matter Hyperintensity Segmentation using FLAIR MRI'''<br />{{ | + | | ''Team BAUMIP''<br />L.O. Iheme & D. Unay<br />'''Automatic White Matter Hyperintensity Segmentation using FLAIR MRI'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}} |
| | | | ||
| 84.140 | | 84.140 |
Revision as of 19:57, 19 January 2017
<meta name="title" content="The 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge" />
The 2015 Longitudinal MS Lesion Segmentation Challenge
2015 Longitudinal MS Lesion Segmentation Challenge | ||
---|---|---|
MS Challenge Overview | MS Challenge Data | MS Challenge Evaluation |
I. Introduction
The Longitudinal MS Lesion Segmentation Challenge was conducted at the 2015 International Symposium on Biomedical Imaging in New York, NY, April 16-19. Competing teams applied their automatic lesion segmentation algorithms to MR neuroimaging data acquired at multiple time points from MS patients. Algorithms were evaluated against manual segmentations from two raters in terms of their segmentation accuracy and ability to track lesion evolution.
34 Teams initially registered for the Challenge coming from 15 different countries, representing 27 different institutions/universities. Congratulations to Team IIT Madras (First Prize), Team PVG_1 (Second Prize), and Team IMI (Third Prize and Efficiency Prize)!
Information about the data is available here, and the evaluation software from here.
Current Leaderboard
A live leaderboard is maintained on the Smart Stats Website. This leaderboard is updated to include links to the associated papers.
Leaderboard | |||
Ranking | Method Name Authors Paper Title Paper Link(s) |
Website Score | |
1 | Team PVG One A. Jesson & T. Arbel Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI (doi) (PubMed) |
90.698 | |
2 | Team IMI O. Maier & H. Handels MS-Lesion Segmentation in MRI with Random Forests (doi) (PubMed) |
90.283 | |
3 | MV-CNN A. Birenbaum & H. Greenspan Multi-View Convolutional Neural Networks (doi) |
90.070 | |
4 | Team VISAGES GCEM L. Catanese, O. Commowick, & C. Barillot Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions (doi) (PubMed) |
89.807 | |
5 | Team IIT Madras S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural Networks (doi) (PubMed) |
89.159 | |
6 | Team MS*metrix* S. Jain, D.M. Sima, & D. Smeets Automatic Longitudinal Multiple Sclerosis Lesion Segmentation (doi) (PubMed) |
88.744 | |
7 | Lesion-TOADS N. Shiee, P.-L. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi, & D. L. Pham A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions (doi) (PubMed) (PMCID 2806481) |
88.465 | |
8 | Team CMIC F. Prados, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, & S. Ourselin Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection (doi) (PubMed) |
88.009 | |
9 | MORF A. Jog, A. Carass, D.L. Pham, & J.L. Prince Multi-Output Random Forests for Lesion Segmentation in Multiple Sclerosis (doi) (PubMed) (PMCID 5041594) |
87.917 | |
10 | Team TIG-BF C.H. Sudre, M.J. Cardoso, & S. Ourselin Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation (doi) (PubMed) |
87.376 | |
11 | Team CRL X. Tomas-Fernandez & S.K. Warfield Model of Population and Subject (MOPS) Segmentation (doi) (PubMed) |
87.017 | |
12 | Team DIAG M. Ghafoorian & B. Platel Convolution Neural Networks for MS Lesion Segmentation (doi) (PubMed) |
86.916 | |
13 | Team TIG C.H. Sudre, M.J. Cardoso, & S. Ourselin Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation (doi) (PubMed) |
86.436 | |
14 | Team VISAGES DL H. Deshpande, P. Maurel, & C. Barillot Sparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions (doi) (PubMed) |
86.068 | |
15 | Team BAUMIP L.O. Iheme & D. Unay Automatic White Matter Hyperintensity Segmentation using FLAIR MRI (doi) (PubMed) |
84.140 | |
VII. Organizers
Primary Organizer:
Dzung Pham, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
Organizing committee members:
Pierre-Louis Bazin, Department of Neurophysics, Max Planck Institute, Leipzig, Germany
Aaron Carass, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
Peter Calabresi, Department of Neurology, Johns Hopkins University, Baltimore, MD
Ciprian Crainiceanu, Department of Biostatistics, Johns Hopkins University, Baltimore, MD
Lotta Ellingsen, Department of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
Qing He, Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD
Jerry Prince, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
Daniel Reich, Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
Snehashis Roy, Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD
VIII. Funding support
This challenge was supported in part by a grant from the National Institute of Neurological Disorders and Stroke (NINDS R01 NS070906). Funding for prizes was provided by the National Multiple Sclerosis Society.