Difference between revisions of "MSChallenge"

From IACL
Jump to navigation Jump to search
(Added comment about article links.)
(Update.)
Line 30: Line 30:
 
|-
 
|-
 
| 1
 
| 1
 +
| ''MV-CNN''<br />A. Birenbaum & H. Greenspan<br />'''Multi-View Convolutional Neural Networks'''<br />
 +
|
 +
| 91.267
 +
|-
 +
| colspan="4" style="border-top:1px solid #87cefa;"|
 +
|-
 +
| 3
 
| ''Team PVG One''<br />A. Jesson & T. Arbel<br />'''Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team PVG One''<br />A. Jesson & T. Arbel<br />'''Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|
Line 36: Line 43:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 2
+
| 4
 
| ''Team IMI''<br />O. Maier & H. Handels<br />'''MS-Lesion Segmentation in MRI with Random Forests'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team IMI''<br />O. Maier & H. Handels<br />'''MS-Lesion Segmentation in MRI with Random Forests'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|
Line 43: Line 50:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 3
+
| 5
 +
| ''ATMS''<br />Olfa Ghribi<br /><br />
 +
|
 +
| 90.170
 +
|-
 +
| colspan="4" style="border-top:1px solid #87cefa;"|
 +
|-
 +
| 6
 
| ''MV-CNN''<br />A. Birenbaum & H. Greenspan<br />'''Multi-View Convolutional Neural Networks'''<br />{{pub|doi=10.1007/978-3-319-46976-8_7|period=}}
 
| ''MV-CNN''<br />A. Birenbaum & H. Greenspan<br />'''Multi-View Convolutional Neural Networks'''<br />{{pub|doi=10.1007/978-3-319-46976-8_7|period=}}
 
|
 
|
Line 50: Line 64:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 4
+
| 7
 +
| ''ATMS''<br />Olfa Ghribi<br /><br />
 +
|
 +
| 89.844
 +
|-
 +
| colspan="4" style="border-top:1px solid #87cefa;"|
 +
|-
 +
| 8
 
| ''Team VISAGES GCEM''<br />L. Catanese, O. Commowick, & C. Barillot<br />'''Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team VISAGES GCEM''<br />L. Catanese, O. Commowick, & C. Barillot<br />'''Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|
Line 57: Line 78:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 5
+
| 9
 
| ''Team IIT Madras''<br />S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi<br />'''Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural Networks'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team IIT Madras''<br />S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi<br />'''Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural Networks'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|
Line 64: Line 85:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 6
+
| 10
 
| ''Team MS*metrix*''<br />S. Jain, D.M. Sima, & D. Smeets<br />'''Automatic Longitudinal Multiple Sclerosis Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team MS*metrix*''<br />S. Jain, D.M. Sima, & D. Smeets<br />'''Automatic Longitudinal Multiple Sclerosis Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|
Line 71: Line 92:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 7
+
| 11
 
| ''Lesion-TOADS''<br />N. Shiee, P.-L. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi, & D. L. Pham<br />'''A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions'''<br />{{pub|doi=10.1016/j.neuroimage.2009.09.005|pubmed=19766196|pmcid=2806481|period=}}
 
| ''Lesion-TOADS''<br />N. Shiee, P.-L. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi, & D. L. Pham<br />'''A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions'''<br />{{pub|doi=10.1016/j.neuroimage.2009.09.005|pubmed=19766196|pmcid=2806481|period=}}
 
|
 
|
Line 78: Line 99:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 8
+
| 12
 
| ''Team CMIC''<br />F. Prados, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, & S. Ourselin<br />'''Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team CMIC''<br />F. Prados, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, & S. Ourselin<br />'''Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|
Line 85: Line 106:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 9
+
| 13
 
| ''MORF''<br />A. Jog, A. Carass, D.L. Pham, & J.L. Prince<br />'''Multi-Output Random Forests for Lesion Segmentation in Multiple Sclerosis'''<br />{{pub|doi=10.1117/12.2082157|pubmed=27695155|pmcid=5041594|period=}}
 
| ''MORF''<br />A. Jog, A. Carass, D.L. Pham, & J.L. Prince<br />'''Multi-Output Random Forests for Lesion Segmentation in Multiple Sclerosis'''<br />{{pub|doi=10.1117/12.2082157|pubmed=27695155|pmcid=5041594|period=}}
 
|
 
|
Line 92: Line 113:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 10
+
| 14
 
| ''Team TIG-BF''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team TIG-BF''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|
Line 99: Line 120:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 11
+
| 15
 
| ''Team CRL''<br />X. Tomas-Fernandez & S.K. Warfield<br />'''Model of Population and Subject (MOPS) Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team CRL''<br />X. Tomas-Fernandez & S.K. Warfield<br />'''Model of Population and Subject (MOPS) Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|
Line 106: Line 127:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 12
+
| 16
 
| ''Team DIAG''<br />M. Ghafoorian & B. Platel<br />'''Convolution Neural Networks for MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team DIAG''<br />M. Ghafoorian & B. Platel<br />'''Convolution Neural Networks for MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|
Line 113: Line 134:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 13
+
| 17
 
| ''Team TIG''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team TIG''<br />C.H. Sudre, M.J. Cardoso, & S. Ourselin<br />'''Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|
Line 120: Line 141:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 14
+
| 18
 
| ''Team VISAGES DL''<br />H. Deshpande, P. Maurel, & C. Barillot<br />'''Sparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team VISAGES DL''<br />H. Deshpande, P. Maurel, & C. Barillot<br />'''Sparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|
Line 127: Line 148:
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
| colspan="4" style="border-top:1px solid #87cefa;"|
 
|-
 
|-
| 15
+
| 19
 
| ''Team BAUMIP''<br />L.O. Iheme & D. Unay<br />'''Automatic White Matter Hyperintensity Segmentation using FLAIR MRI'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
| ''Team BAUMIP''<br />L.O. Iheme & D. Unay<br />'''Automatic White Matter Hyperintensity Segmentation using FLAIR MRI'''<br />{{pub|doi=10.1016/j.neuroimage.2016.12.064|pubmed=28087490|period=}}
 
|
 
|

Revision as of 18:47, 31 January 2017

<meta name="title" content="The 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge" />

The 2015 Longitudinal MS Lesion Segmentation Challenge

2015 Longitudinal MS Lesion Segmentation Challenge
MS Challenge Overview MS Challenge Data MS Challenge Evaluation

I. Introduction

2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge

The Longitudinal MS Lesion Segmentation Challenge was conducted at the 2015 International Symposium on Biomedical Imaging in New York, NY, April 16-19. Competing teams applied their automatic lesion segmentation algorithms to MR neuroimaging data acquired at multiple time points from MS patients. Algorithms were evaluated against manual segmentations from two raters in terms of their segmentation accuracy and ability to track lesion evolution.

34 Teams initially registered for the Challenge coming from 15 different countries, representing 27 different institutions/universities. Congratulations to Team IIT Madras (First Prize), Team PVG_1 (Second Prize), and Team IMI (Third Prize and Efficiency Prize)!

Information about the data is available here, and the evaluation software from here.


Current Leaderboard

A live leaderboard is maintained on the Smart Stats Website. This leaderboard is updated to include links to the associated papers; most currently point to the main Challenge Article: A. Carass, S. Roy, A. Jog, J.L. Cuzzocreo, E. Magrath, A. Gherman, J. Button, J. Nguyen, F. Prados, C.H. Sudre, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, S. Ourselin, L. Catanese, H. Deshpande, P. Maurel, O. Commowick, C. Barillot, X. Tomas-Fernandez, S.K. Warfield, S. Vaidya, A. Chunduru, R. Muthuganapathy, G. Krishnamurthi, A. Jesson, T. Arbel, O. Maier, H. Handels, L.O. Iheme, D. Unay, S. Jain, D.M. Sima, D. Smeets, M. Ghafoorian, B. Platel, A. Birenbaum, H. Greenspan, P.-L. Bazin, P.A. Calabresi, C.M. Crainiceanu, L.M. Ellingsen, D.S. Reich, J.L. Prince, and D.L. Pham, "Longitudinal Multiple Sclerosis Lesion Segmentation: Resource and Challenge", NeuroImage, 148(C):77-102, 2017. (doi) (PubMed).

Leaderboard
Ranking   Method Name
Authors
Paper Title
Paper Link(s)
Website
Score
1 MV-CNN
A. Birenbaum & H. Greenspan
Multi-View Convolutional Neural Networks
91.267
3 Team PVG One
A. Jesson & T. Arbel
Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI
 (doi) (PubMed)
90.698
4 Team IMI
O. Maier & H. Handels
MS-Lesion Segmentation in MRI with Random Forests
 (doi) (PubMed)
90.283
5 ATMS
Olfa Ghribi

90.170
6 MV-CNN
A. Birenbaum & H. Greenspan
Multi-View Convolutional Neural Networks
 (doi)
90.070
7 ATMS
Olfa Ghribi

89.844
8 Team VISAGES GCEM
L. Catanese, O. Commowick, & C. Barillot
Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions
 (doi) (PubMed)
89.807
9 Team IIT Madras
S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi
Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural Networks
 (doi) (PubMed)
89.159
10 Team MS*metrix*
S. Jain, D.M. Sima, & D. Smeets
Automatic Longitudinal Multiple Sclerosis Lesion Segmentation
 (doi) (PubMed)
88.744
11 Lesion-TOADS
N. Shiee, P.-L. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi, & D. L. Pham
A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions
 (doi) (PubMed) (PMCID 2806481)
88.465
12 Team CMIC
F. Prados, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, & S. Ourselin
Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection
 (doi) (PubMed)
88.009
13 MORF
A. Jog, A. Carass, D.L. Pham, & J.L. Prince
Multi-Output Random Forests for Lesion Segmentation in Multiple Sclerosis
 (doi) (PubMed) (PMCID 5041594)
87.917
14 Team TIG-BF
C.H. Sudre, M.J. Cardoso, & S. Ourselin
Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation
 (doi) (PubMed)
87.376
15 Team CRL
X. Tomas-Fernandez & S.K. Warfield
Model of Population and Subject (MOPS) Segmentation
 (doi) (PubMed)
87.017
16 Team DIAG
M. Ghafoorian & B. Platel
Convolution Neural Networks for MS Lesion Segmentation
 (doi) (PubMed)
86.916
17 Team TIG
C.H. Sudre, M.J. Cardoso, & S. Ourselin
Model Selection Propagation for Application on Longitudinal MS Lesion Segmentation
 (doi) (PubMed)
86.436
18 Team VISAGES DL
H. Deshpande, P. Maurel, & C. Barillot
Sparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions
 (doi) (PubMed)
86.068
19 Team BAUMIP
L.O. Iheme & D. Unay
Automatic White Matter Hyperintensity Segmentation using FLAIR MRI
 (doi) (PubMed)
84.140


VII. Organizers

Primary Organizer:
Dzung Pham, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD

Organizing committee members:
Pierre-Louis Bazin, Department of Neurophysics, Max Planck Institute, Leipzig, Germany
Aaron Carass, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
Peter Calabresi, Department of Neurology, Johns Hopkins University, Baltimore, MD
Ciprian Crainiceanu, Department of Biostatistics, Johns Hopkins University, Baltimore, MD
Lotta Ellingsen, Department of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
Qing He, Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD
Jerry Prince, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
Daniel Reich, Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
Snehashis Roy, Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD


VIII. Funding support

This challenge was supported in part by a grant from the National Institute of Neurological Disorders and Stroke (NINDS R01 NS070906). Funding for prizes was provided by the National Multiple Sclerosis Society.