Cerebellum CNN
Jump to navigation
Jump to search
<meta name="title" content="ACAPULCO: Cerebellum Parcellation with Convolutional Neural Networks"/>
Cerebellum Parcellation with Convolutional Neural Networks
Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization (ACAPULCO) is our current cerebellum parcellation method. The associated publication is:
- S. Han, A. Carass, Y. He, and J.L. Prince, "Automatic Cerebellum Anatomical Parcellation using U-Net with Locally Constrained Optimization", NeuroImage, 218:116819, 2020. (doi)
ACAPULCO | |
Docker image CPU | 1.8GB |
Docker image GPU | 2.5GB |
Singularity image CPU | 1.7GB |
Singularity image GPU | 2.4GB |
If you use it please cite the above paper. If you have any questions, please email Shuo Han at shan50 _AT_ jhu.edu
.
Instructions
The instructions are available here.
Delineation protocols: region names and voxel values
- Adult training data:
"Background": 0, "Corpus Medullare": 12, "Left I-III": 33, "Right I-III": 36, "Left IV": 43, "Rigt IV": 46, "Left V": 53, "Right V": 56, "Vermis VI": 60, "Left VI": 63, "Right VI": 66, "Vermis VII": 70, "Left Crus I": 73, "Left Crus II": 74, "Left VIIB": 75, "Right Crus I": 76, "Right Crus II": 77, "Right VIIB": 78, "Vermis VIII": 80, "Left VIIIA": 83, "Left VIIIB": 84, "Right VIIIA": 86, "Right VIIIB": 87, "Vermis IX": 90, "Left IX": 93, "Right IX": 96, "Vermis X": 100, "Left X": 103, "Right X": 106
- Pediatric training data:
"Background": 0, "Right Lobules I-V": 3, "Right Lobule VI": 4, "Right Crus I": 5, "Right Crus II/VIIB": 6, "Right Lobule VIII": 7, "Right Lobule IX": 8, "Right Lobule X": 9, "Left Lobules I-V": 10, "Left Lobule VI": 11, "Left Crus I": 12, "Left Crus II/VIIB": 13, "Left Lobule VIII": 14, "Left Lobule IX": 15, "Left Lobule X": 16, "Vermis I-V": 17, "Vermis VI-VII": 18, "Vermis VIII-X": 19, "Corpus Medullare": 20